About the Project
19 Elliptic IntegralsSymmetric Integrals

§19.23 Integral Representations

In (19.23.1)–(19.23.3) we assume y>0 and z>0.

19.23.1 RF(0,y,z)=0π/2(ycos2θ+zsin2θ)1/2dθ,
19.23.2 RG(0,y,z)=120π/2(ycos2θ+zsin2θ)1/2dθ,
19.23.3 RD(0,y,z)=30π/2(ycos2θ+zsin2θ)3/2sin2θdθ.
19.23.4 RF(0,y,z)=2π0π/2RC(y,zcos2θ)dθ=2π0RC(ycosh2t,z)dt.
19.23.5 RF(x,y,z)=2π0π/2RC(x,ycos2θ+zsin2θ)dθ,
y>0, z>0,
19.23.6 4πRF(x,y,z)=02π0πsinθdθdϕ(xsin2θcos2ϕ+ysin2θsin2ϕ+zcos2θ)1/2,
19.23.6_5 RG(x,y,z)=14π02π0π(xsin2θcos2ϕ+ysin2θsin2ϕ+zcos2θ)1/2sinθdθdϕ,

where x, y, and z have positive real parts—except that at most one of them may be 0.

In (19.23.8)–(19.23.10) one or more of the variables may be 0 if the integral converges. In (19.23.8) n=2, and in (19.23.9) n=3. Also, in (19.23.8) and (19.23.10) B denotes the beta function (§5.12).

19.23.7 Moved to (19.16.2_5).
19.23.8 Ra(𝐛;𝐳)=2B(b1,b2)0π/2(z1cos2θ+z2sin2θ)a×(cosθ)2b11(sinθ)2b21dθ,
b1,b2>0; z1,z2>0.

With l1,l2,l3 denoting any permutation of sinθcosϕ, sinθsinϕ, cosθ,

19.23.9 Ra(𝐛;𝐳)=4Γ(b1+b2+b3)Γ(b1)Γ(b2)Γ(b3)0π/20π/2(j=13zjlj2)aj=13lj2bj1sinθdθdϕ,
bj>0, zj>0.
19.23.10 Ra(𝐛;𝐳)=1B(a,a)01ua1(1u)a1j=1n(1u+uzj)bjdu,
a,a>0; a+a=j=1nbj; zj(,0].

For generalizations of (19.23.6_5) and (19.23.8) see Carlson (1964, (6.2), (6.12), and (6.1)).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy