About the Project
Notations

Notations F

F D
Lauricella’s multivariate hypergeometric function; §19.15
F n
Fibonacci number; §26.11
f ( x )
Euler’s reciprocal function; (27.14.2)
f ( z )
auxiliary function for Fresnel integrals; (7.2.10)
f ( z )
auxiliary function for sine and cosine integrals; (6.2.17)
F ( z )
Dawson’s integral; (7.2.5)
( z )
Fresnel integral; (7.2.6)
𝖥 ( z 1 ) = ψ ( z )
notation used by Pairman (1919); §5.1
(with ψ(z): psi (or digamma) function)
f e , m ( h )
joining factor for radial Mathieu functions; §28.22(i)
F ν ( z ) = Me ν ( z , q )
notation used by Abramowitz and Stegun (1964, Chapter 20); §28.1
(with Meν(z,q): modified Mathieu function)
f o , m ( h )
joining factor for radial Mathieu functions; §28.22(i)
F p ( z )
terminant function; (2.11.11)
F s ( x )
Fermi–Dirac integral; (25.12.14)
( f ) ( s )
Fourier transform; (1.14.1)
c ( f ) ( s )
Fourier cosine transform; (1.14.9)
s ( f ) ( s )
Fourier sine transform; (1.14.10)
( u )
Fourier transform of a tempered distribution; (1.16.35)
F ( ϕ \ α ) = F ( ϕ , k )
notation used by Abramowitz and Stegun (1964, Chapter 17); §19.1
(with F(ϕ,k): Legendre’s incomplete elliptic integral of the first kind)
F ( ϕ , k )
Legendre’s incomplete elliptic integral of the first kind; (19.2.4)
F ( η , ρ )
regular Coulomb radial function; (33.2.3)
F ( x , s )
periodic zeta function; (25.13.1)
F(a,b;c;z) or F(a,bc;z)
=F12(a,b;c;z) Gauss’ hypergeometric function; (15.2.1)
𝐅(a,b;c;z) or 𝐅(a,bc;z)
=𝐅12(a,b;c;z) Olver’s hypergeometric function; (15.2.2)
f ( ϵ , ; r ) = s ( ϵ , ; r )
notation used by Greene et al. (1979); item Greene et al. (1979):
(with s(ϵ,;r): regular Coulomb function)
f ( ϵ , ; r )
regular Coulomb function; (33.14.4)
F 1 1 ( a ; b ; z )
=M(a,b,z) notation for the Kummer confluent hypergeometric function; §16.2
F11(a;b;𝐓) or F11(ab;𝐓)
confluent hypergeometric function of matrix argument (first kind); §35.6(i)
F 1 2 ( a , b ; c ; z )
=F(a,b;c;z) notation for Gauss’ hypergeometric function; §16.2
F12(a,b;c;𝐓) or F12(a,bc;𝐓)
Gaussian hypergeometric function of matrix argument; (35.7.1)
𝐅 1 2 ( a , b ; c ; z )
Olver’s hypergeometric function; (15.2.2)
Fqp(a1,,ap;b1,,bq;z) or Fqp(a1,,apb1,,bq;z)
alternatively Fqp(𝐚;𝐛;z) or Fqp(𝐚𝐛;z)
generalized hypergeometric function; §16.2
𝐅qp(𝐚;𝐛;z) or 𝐅qp(𝐚𝐛;z)
scaled (or Olver’s) generalized hypergeometric function; (16.2.5)
Fqp(a1,,ap;b1,,bq;𝐓) or Fqp(a1,,apb1,,bq;𝐓)
generalized hypergeometric function of matrix argument; (35.8.1)
f ( 0 ) ( ϵ , ; r ) = f ( ϵ , ; r )
notation used by Greene et al. (1979); item Greene et al. (1979):
(with f(ϵ,;r): regular Coulomb function)
F ( a , b ; t : q )
alternative notation for specialization of ϕ12; Fine (1988); §17.1
F 1 ( α ; β , β ; γ ; x , y )
first Appell function; (16.13.1)
F 2 ( α ; β , β ; γ , γ ; x , y )
second Appell function; (16.13.2)
F 3 ( α , α ; β , β ; γ ; x , y )
third Appell function; (16.13.3)
F 4 ( α , β ; γ , γ ; x , y )
fourth Appell function; (16.13.4)
Fe n ( z , q )
modified Mathieu function; (28.20.6)
fe n ( z , q )
second solution, Mathieu’s equation; (28.5.1)
Fey n ( z , q ) = 1 2 π g e , n ( h ) ce n ( 0 , q ) Mc n ( 2 ) ( z , h )
notation used by Arscott (1964b), McLachlan (1947); §28.1
(with cen(z,q): Mathieu function, π: the ratio of the circumference of a circle to its diameter and Mcn(j)(z,h): radial Mathieu function)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy