About the Project
16 Generalized Hypergeometric Functions & Meijer G-FunctionTwo-Variable Hypergeometric Functions

§16.16 Transformations of Variables

Contents
  1. §16.16(i) Reduction Formulas
  2. §16.16(ii) Other Transformations

§16.16(i) Reduction Formulas

16.16.1 F1(α;β,β;β+β;x,y) =(1y)αF12(α,ββ+β;xy1y),
16.16.2 F2(α;β,β;γ,β;x,y) =(1y)αF12(α,βγ;x1y),
16.16.3 F2(α;β,β;γ,α;x,y) =(1y)βF1(β;αβ,β;γ;x,x1y),
16.16.4 F3(α,γα;β,β;γ;x,y) =(1y)βF1(α;β,β;γ;x,yy1),
16.16.5 F3(α,γα;β,γβ;γ;x,y) =(1y)α+βγF12(α,βγ;x+yxy),
16.16.5_5 F4(α,β;γ,β;x(1y),y(1x)) =(1x)α(1y)αF1(α;γβ,αγ+1;γ;xx1,xy(1x)(1y)),
16.16.6 F4(α,β;γ,α+βγ+1;x(1y),y(1x)) =F12(α,βγ;x)F12(α,βα+βγ+1;y).

See Erdélyi et al. (1953a, §5.10) for these and further reduction formulas. An extension of (16.16.6) is given by

16.16.7 F4(α,β;γ,γ;x(1y),y(1x))=k=0(α)k(β)k(α+βγγ+1)k(γ)k(γ)kk!xkykF12(α+k,β+kγ+k;x)F12(α+k,β+kγ+k;y);

see Burchnall and Chaundy (1940, 1941).

§16.16(ii) Other Transformations

16.16.8 F1(α;β,β;γ;x,y)=(1x)β(1y)βF1(γα;β,β;γ;xx1,yy1)=(1x)αF1(α;γββ,β;γ;xx1,yx1x),
16.16.9 F2(α;β,β;γ,γ;x,y)=(1x)αF2(α;γβ,β;γ,γ;xx1,y1x),
16.16.10 F4(α,β;γ,γ;x,y)=Γ(γ)Γ(βα)Γ(γα)Γ(β)(y)αF4(α,αγ+1;γ,αβ+1;xy,1y)+Γ(γ)Γ(αβ)Γ(γβ)Γ(α)(y)βF4(β,βγ+1;γ,βα+1;xy,1y).

For quadratic transformations of Appell functions see Carlson (1976).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy