About the Project
4 Elementary FunctionsTrigonometric Functions

§4.21 Identities

Contents
  1. §4.21(i) Addition Formulas
  2. §4.21(ii) Squares and Products
  3. §4.21(iii) Multiples of the Argument
  4. §4.21(iv) Real and Imaginary Parts; Moduli

§4.21(i) Addition Formulas

4.21.1 sinu±cosu=2sin(u±14π)=±2cos(u14π).
4.21.1_5 Acosu+Bsinu=A2+B2cos(uph(A+Bi)),
A,B,
4.21.2 sin(u±v) =sinucosv±cosusinv,
4.21.3 cos(u±v) =cosucosvsinusinv,
4.21.4 tan(u±v) =tanu±tanv1tanutanv,
4.21.5 cot(u±v) =±cotucotv1cotu±cotv.
4.21.6 sinu+sinv =2sin(u+v2)cos(uv2),
4.21.7 sinusinv =2cos(u+v2)sin(uv2),
4.21.8 cosu+cosv =2cos(u+v2)cos(uv2),
4.21.9 cosucosv =2sin(u+v2)sin(uv2).
4.21.10 tanu±tanv =sin(u±v)cosucosv,
4.21.11 cotu±cotv =sin(v±u)sinusinv.

§4.21(ii) Squares and Products

4.21.12 sin2z+cos2z=1,
4.21.13 sec2z=1+tan2z,
4.21.14 csc2z=1+cot2z.
4.21.15 2sinusinv=cos(uv)cos(u+v),
4.21.16 2cosucosv=cos(uv)+cos(u+v),
4.21.17 2sinucosv=sin(uv)+sin(u+v).
4.21.18 sin2usin2v =sin(u+v)sin(uv),
4.21.19 cos2ucos2v =sin(u+v)sin(uv),
4.21.20 cos2usin2v =cos(u+v)cos(uv).

§4.21(iii) Multiples of the Argument

4.21.21 sinz2=±(1cosz2)1/2,
4.21.22 cosz2=±(1+cosz2)1/2,
4.21.23 tanz2=±(1cosz1+cosz)1/2=1coszsinz=sinz1+cosz.

In (4.21.21)–(4.21.23) Table 4.16.1 and analytic continuation will assist in resolving sign ambiguities.

4.21.24 sin(z) =sinz,
4.21.25 cos(z) =cosz,
4.21.26 tan(z) =tanz.
4.21.27 sin(2z)=2sinzcosz=2tanz1+tan2z,
4.21.28 cos(2z)=2cos2z1=12sin2z=cos2zsin2z=1tan2z1+tan2z,
4.21.29 tan(2z)=2tanz1tan2z=2cotzcot2z1=2cotztanz.
4.21.30 sin(3z) =3sinz4sin3z,
4.21.31 cos(3z) =3cosz+4cos3z,
4.21.32 sin(4z) =8cos3zsinz4coszsinz,
4.21.33 cos(4z) =8cos4z8cos2z+1.

De Moivre’s Theorem

When n

4.21.34 cos(nz)+isin(nz)=(cosz+isinz)n.

This result is also valid when n is fractional or complex, provided that πzπ.

4.21.35 sin(nz)=2n1k=0n1sin(z+kπn),
n=1,2,3,.

If t=tan(12z), then

4.21.36 sinz =2t1+t2,
cosz =1t21+t2,
dz =21+t2dt.

§4.21(iv) Real and Imaginary Parts; Moduli

With z=x+iy

4.21.37 sinz=sinxcoshy+icosxsinhy,
4.21.38 cosz=cosxcoshyisinxsinhy,
4.21.39 tanz=sin(2x)+isinh(2y)cos(2x)+cosh(2y),
4.21.40 cotz=sin(2x)isinh(2y)cosh(2y)cos(2x).
4.21.41 |sinz|=(sin2x+sinh2y)1/2=(12(cosh(2y)cos(2x)))1/2,
4.21.42 |cosz|=(cos2x+sinh2y)1/2=(12(cosh(2y)+cos(2x)))1/2,
4.21.43 |tanz|=(cosh(2y)cos(2x)cosh(2y)+cos(2x))1/2.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy