About the Project
Notations

Notations E

equals by definition; Common Notations and Definitions
e
elementary charge; §18.39(ii)
e
base of natural logarithm; (4.2.11)
element of; Common Notations and Definitions
not an element of; Common Notations and Definitions
E n
Euler numbers; §24.2(ii)
E n ( )
generalized Euler numbers; §24.16(i)
E ( α ) = E ( k )
notation used by Abramowitz and Stegun (1964, Chapter 17); §19.1
(with E(k): Legendre’s complete elliptic integral of the second kind)
E ( k )
Legendre’s complete elliptic integral of the second kind; (19.2.8)
η ( τ )
Dedekind’s eta function (or Dedekind modular function); (27.14.12)
E 1 ( z )
exponential integral; (6.2.1)
E ( k )
Legendre’s complementary complete elliptic integral of the second kind; (19.2.8_2)
e 0 ( x ) = π Hi ( x )
notation used by Tumarkin (1959); §9.1
(with Hi(z): Scorer function (inhomogeneous Airy function) and π: the ratio of the circumference of a circle to its diameter)
e ~ 0 ( x ) = π Gi ( x )
notation used by (Tumarkin, 1959); §9.1
(with Gi(z): Scorer function (inhomogeneous Airy function) and π: the ratio of the circumference of a circle to its diameter)
E a , b ( z )
Mittag-Leffler function; (10.46.3)
E n ( x )
Euler polynomials; §24.2(ii)
𝐄 ν ( z )
Weber function; (11.10.2)
E p ( z )
generalized exponential integral; (8.19.1)
E q ( x )
q-exponential function; (17.3.2)
e q ( x )
q-exponential function; (17.3.1)
E s ( 𝐳 )
elementary symmetric function; (19.19.4)
E n ( ) ( x )
generalized Euler polynomials; §24.16(i)
E ~ n ( x )
periodic Euler functions; §24.2(iii)
E ( ϕ \ α ) = E ( ϕ , k )
notation used by Abramowitz and Stegun (1964, Chapter 17); §19.1
(with E(ϕ,k): Legendre’s incomplete elliptic integral of the second kind)
E ( ϕ , k )
Legendre’s incomplete elliptic integral of the second kind; (19.2.5)
e j
Weierstrass lattice roots; §23.3(i)
Ec ν 2 m ( z , k 2 ) 𝐸𝑐 ν 2 m ( z , k 2 )
notation used by Ince (1940b); §29.1
(with 𝐸𝑐νm(z,k2): Lamé function)
Ec ν 2 m + 1 ( z , k 2 ) 𝐸𝑠 ν 2 m + 1 ( z , k 2 )
notation used by Ince (1940b); §29.1
(with 𝐸𝑠νm(z,k2): Lamé function)
𝐸𝑐 ν m ( z , k 2 )
Lamé function; §29.3(iv)
Ei ( x )
exponential integral; §6.2(i)
Ein ( z )
complementary exponential integral; (6.2.3)
el1 ( x , k c )
Bulirsch’s incomplete elliptic integral of the first kind; (19.2.11_5)
el2 ( x , k c , a , b )
Bulirsch’s incomplete elliptic integral of the second kind; (19.2.12)
el3 ( x , k c , p )
Bulirsch’s incomplete elliptic integral of the third kind; (19.2.16)
envAi ( x )
envelope of Airy function Ai(x); §2.8(iii)
envBi ( x )
envelope of Airy function Bi(x); §2.8(iii)
env J ν ( x )
envelope of Bessel function Jν(x); §2.8(iv)
env Y ν ( x )
envelope of Bessel function Yν(x); §2.8(iv)
env U ( c , x )
envelope of parabolic cylinder function U(c,x); §14.15(v)
env U ¯ ( c , x )
envelope of parabolic cylinder function U¯(c,x); §14.15(v)
ϵ j k
Levi-Civita symbol; (1.6.14)
( x , k )
Jacobi’s epsilon function; (22.16.14)
modular equivalence; Common Notations and Definitions
Erf z = 1 2 π erf z
alternative notation for the error function; §7.1
(with π: the ratio of the circumference of a circle to its diameter and erfz: error function)
erf z
error function; (7.2.1)
erfc z
complementary error function; (7.2.2)
Erfi z = e z 2 F ( z )
alternative notation for Dawson’s integral; §7.1
(with F(z): Dawson’s integral and e: base of natural logarithm)
Es ν 2 m + 1 ( z , k 2 ) 𝐸𝑐 ν 2 m + 1 ( z , k 2 )
notation used by Ince (1940b); §29.1
(with 𝐸𝑐νm(z,k2): Lamé function)
Es ν 2 m + 2 ( z , k 2 ) 𝐸𝑠 ν 2 m + 2 ( z , k 2 )
notation used by Ince (1940b); §29.1
(with 𝐸𝑠νm(z,k2): Lamé function)
𝐸𝑠 ν m ( z , k 2 )
Lamé function; §29.3(iv)
etr ( 𝐀 )
exponential of trace; (1.2.77)
exp z
exponential function; (4.2.19)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy