About the Project
10 Bessel FunctionsBessel and Hankel Functions

§10.14 Inequalities; Monotonicity

10.14.1 |Jν(x)| 1,
ν0,x,
|Jν(x)| 212,
ν1,x.
10.14.2 0<Jν(ν)<213323Γ(23)ν13,
ν>0.

For monotonicity properties of Jν(ν) and Jν(ν) see Lorch (1992).

10.14.3 |Jn(z)| e|z|,
n.
10.14.4 |Jν(z)| |12z|νe|z|Γ(ν+1),
ν12.
10.14.5 |Jν(νx)|xνexp(ν(1x2)12)(1+(1x2)12)ν,
ν0,0<x1;

see Siegel (1953).

10.14.6 |Jν(νx)|(1+x2)14x(2πν)12xνexp(ν(1x2)12)(1+(1x2)12)ν,
ν>0,0<x1;

see Watson (1944, p. 255). For a related bound for Yν(νx) see Siegel and Sleator (1954).

10.14.7 1Jν(νx)xνJν(ν)eν(1x),
ν0,0<x1;

see Paris (1984). For similar bounds for 𝒞ν(x)10.2(ii)) see Laforgia (1986).

Kapteyn’s Inequality

10.14.8 |Jn(nz)||znexp(n(1z2)12)||1+(1z2)12|n,
n=0,1,2,,

where (1z2)12 has its principal value.

10.14.9 |Jn(nz)|1,
n=0,1,2,,z𝐊,

where 𝐊 is defined in §10.20(ii).

For inequalities for the function Γ(ν+1)(2/x)νJν(x) with ν>12 see Neuman (2004).

For further monotonicity properties see Landau (1999, 2000), and Muldoon and Spigler (1984).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy