About the Project
14 Legendre and Related FunctionsReal Arguments

§14.13 Trigonometric Expansions

When 0<θ<π, and ν+μ is not a negative integer,

14.13.1 𝖯νμ(cosθ) =2μ+1(sinθ)μπ1/2k=0Γ(ν+μ+k+1)Γ(ν+k+32)(μ+12)kk!sin((ν+μ+2k+1)θ),
14.13.2 𝖰νμ(cosθ) =π1/22μ(sinθ)μk=0Γ(ν+μ+k+1)Γ(ν+k+32)(μ+12)kk!cos((ν+μ+2k+1)θ).

These Fourier series converge absolutely when μ<0. If 0μ<12 then they converge, but, if θ12π, they do not converge absolutely.

In particular,

14.13.3 𝖯n(cosθ) =22n+2(n!)2π(2n+1)!k=013(2k1)k!(n+1)(n+2)(n+k)(2n+3)(2n+5)(2n+2k+1)×sin((n+2k+1)θ),
14.13.4 𝖰n(cosθ) =22n+1(n!)2(2n+1)!k=013(2k1)k!(n+1)(n+2)(n+k)(2n+3)(2n+5)(2n+2k+1)×cos((n+2k+1)θ),

with conditional convergence for each.

For other trigonometric expansions see Erdélyi et al. (1953a, pp. 146–147).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy