About the Project
18 Orthogonal PolynomialsClassical Orthogonal Polynomials

§18.6 Symmetry, Special Values, and Limits to Monomials

Contents
  1. §18.6(i) Symmetry and Special Values
  2. §18.6(ii) Limits to Monomials

§18.6(i) Symmetry and Special Values

For Jacobi, ultraspherical, Chebyshev, Legendre, and Hermite polynomials, see Table 18.6.1.

Laguerre

18.6.1 Ln(α)(0)=(α+1)nn!.
Table 18.6.1: Classical OP’s: symmetry and special values.
pn(x) pn(x) pn(1) p2n(0) p2n+1(0)
Pn(α,β)(x) (1)nPn(β,α)(x) (α+1)n/n!
Pn(α,α)(x) (1)nPn(α,α)(x) (α+1)n/n! (14)n(n+α+1)n/n! (14)n(n+α+1)n+1/n!
Cn(λ)(x) (1)nCn(λ)(x) (2λ)n/n! (1)n(λ)n/n! 2(1)n(λ)n+1/n!
Tn(x) (1)nTn(x) 1 (1)n (1)n(2n+1)
Un(x) (1)nUn(x) n+1 (1)n (1)n(2n+2)
Vn(x) (1)nWn(x) 1 (1)n (1)n(2n+2)
Wn(x) (1)nVn(x) 2n+1 (1)n (1)n(2n+2)
Pn(x) (1)nPn(x) 1 (1)n(12)n/n! 2(1)n(12)n+1/n!
Hn(x) (1)nHn(x) (1)n(n+1)n 2(1)n(n+1)n+1
𝐻𝑒n(x) (1)n𝐻𝑒n(x) (12)n(n+1)n (12)n(n+1)n+1

§18.6(ii) Limits to Monomials

18.6.2 limαPn(α,β)(x)Pn(α,β)(1) =(1+x2)n,
18.6.3 limβPn(α,β)(x)Pn(α,β)(1) =(1x2)n,
18.6.4 limλCn(λ)(x)Cn(λ)(1) =xn,
18.6.5 limαLn(α)(αx)Ln(α)(0) =(1x)n.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy