About the Project
10 Bessel FunctionsModified Bessel Functions

§10.44 Sums

Contents
  1. §10.44(i) Multiplication Theorem
  2. §10.44(ii) Addition Theorems
  3. §10.44(iii) Neumann-Type Expansions
  4. §10.44(iv) Compendia

§10.44(i) Multiplication Theorem

10.44.1 𝒵ν(λz)=λ±νk=0(λ21)k(12z)kk!𝒵ν±k(z),
|λ21|<1.

If 𝒵=I and the upper signs are taken, then the restriction on λ is unnecessary.

Examples

10.44.2 Iν(z) =k=0zkk!Jν+k(z),
Jν(z) =k=0(1)kzkk!Iν+k(z).

§10.44(ii) Addition Theorems

Neumann’s Addition Theorem

10.44.3 𝒵ν(u±v)=k=(±1)k𝒵ν+k(u)Ik(v),
|v|<|u|.

The restriction |v|<|u| is unnecessary when 𝒵=I and ν is an integer.

Graf’s and Gegenbauer’s Addition Theorems

For results analogous to (10.23.7) and (10.23.8) see Watson (1944, §§11.3 and 11.41).

§10.44(iii) Neumann-Type Expansions

10.44.4 (12z)ν=k=0(1)k(ν+2k)Γ(ν+k)k!Iν+2k(z),
ν0,1,2,.
10.44.5 K0(z)=(ln(12z)+γ)I0(z)+2k=1I2k(z)k,
10.44.6 Kn(z)=n!(12z)n2k=0n1(1)k(12z)kIk(z)k!(nk)+(1)n1(ln(12z)ψ(n+1))In(z)+(1)nk=1(n+2k)In+2k(z)k(n+k),

where γ is Euler’s constant and ψ=Γ/Γ5.2).

§10.44(iv) Compendia

For collections of sums and series involving modified Bessel functions see Erdélyi et al. (1953b, §7.15), Hansen (1975), and Prudnikov et al. (1986b, pp. 691–700).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy