About the Project
14 Legendre and Related FunctionsReal Arguments

§14.12 Integral Representations

Contents
  1. §14.12(i) 1<x<1
  2. §14.12(ii) 1<x<

§14.12(i) 1<x<1

Mehler–Dirichlet Formula

14.12.1 𝖯νμ(cosθ) =21/2(sinθ)μπ1/2Γ(12μ)0θcos((ν+12)t)(costcosθ)μ+(1/2)dt,
0<θ<π, μ<12.
14.12.2 𝖯νμ(x) =(1x2)μ/2Γ(μ)x1𝖯ν(t)(tx)μ1dt,
μ>0;

compare (14.6.6).

14.12.3 𝖰νμ(cosθ)=π1/2Γ(ν+μ+1)(sinθ)μ2μ+1Γ(μ+12)Γ(νμ+1)×(0(sinht)2μ(cosθ+isinθcosht)ν+μ+1dt+0(sinht)2μ(cosθisinθcosht)ν+μ+1dt),
0<θ<π, μ>12, ν±μ>1.

§14.12(ii) 1<x<

14.12.4 Pνμ(x) =21/2Γ(μ+12)(x21)μ/2π1/2Γ(ν+μ+1)Γ(μν)0cosh((ν+12)t)(x+cosht)μ+(1/2)dt,
ν+μ1,2,3,, (μν)>0.
14.12.5 Pνμ(x) =(x21)μ/2Γ(μ)1xPν(t)(xt)μ1dt,
μ>0.
14.12.6 𝑸νμ(x) =π1/2(x21)μ/22μΓ(μ+12)Γ(νμ+1)0(sinht)2μ(x+(x21)1/2cosht)ν+μ+1dt,
(ν+1)>μ>12.
14.12.7 Pνm(x) =(ν+1)mπ0π(x+(x21)1/2cosϕ)νcos(mϕ)dϕ,
14.12.8 Pnm(x) =2mm!(n+m)!(x21)m/2(2m)!(nm)!π0π(x+(x21)1/2cosϕ)nm(sinϕ)2mdϕ,
nm.
14.12.9 𝑸nm(x)=1n!0u(x(x21)1/2cosht)ncosh(mt)dt,

where

14.12.10 u=12ln(x+1x1).
14.12.11 𝑸nm(x)=(x21)m/22n+1n!11(1t2)n(xt)n+m+1dt,
14.12.12 𝑸nm(x)=1(nm)!Pnm(x)xdt(t21)(Pnm(t))2,
nm.

Neumann’s Integral

14.12.13 𝑸n(x)=12(n!)11Pn(t)xtdt.

Heine’s Integral

For further integral representations see Erdélyi et al. (1953a, pp. 158–159) and Magnus et al. (1966, pp. 184–190), and for contour integrals and other representations see §14.25.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy