About the Project
22 Jacobian Elliptic FunctionsProperties

§22.7 Landen Transformations

Contents
  1. §22.7(i) Descending Landen Transformation
  2. §22.7(ii) Ascending Landen Transformation
  3. §22.7(iii) Generalized Landen Transformations

§22.7(i) Descending Landen Transformation

With

22.7.1 k1=1k1+k,
22.7.2 sn(z,k)=(1+k1)sn(z/(1+k1),k1)1+k1sn2(z/(1+k1),k1),
22.7.3 cn(z,k)=cn(z/(1+k1),k1)dn(z/(1+k1),k1)1+k1sn2(z/(1+k1),k1),
22.7.4 dn(z,k)=dn2(z/(1+k1),k1)(1k1)1+k1dn2(z/(1+k1),k1).

§22.7(ii) Ascending Landen Transformation

With

22.7.5 k2 =2k1+k,
k2 =1k1+k,
22.7.6 sn(z,k)=(1+k2)sn(z/(1+k2),k2)cn(z/(1+k2),k2)dn(z/(1+k2),k2),
22.7.7 cn(z,k)=(1+k2)(dn2(z/(1+k2),k2)k2)k22dn(z/(1+k2),k2),
22.7.8 dn(z,k)=(1k2)(dn2(z/(1+k2),k2)+k2)k22dn(z/(1+k2),k2).

§22.7(iii) Generalized Landen Transformations

See Khare and Sukhatme (2004).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy