About the Project
25 Zeta and Related FunctionsRiemann Zeta Function

§25.6 Integer Arguments

Contents
  1. §25.6(i) Function Values
  2. §25.6(ii) Derivative Values
  3. §25.6(iii) Recursion Formulas

§25.6(i) Function Values

25.6.1 ζ(0) =12,
ζ(2) =π26,
ζ(4) =π490,
ζ(6) =π6945.
25.6.2 ζ(2n) =(2π)2n2(2n)!|B2n|,
n=1,2,3,.
25.6.3 ζ(n) =Bn+1n+1,
n=1,2,3,.
25.6.4 ζ(2n) =0,
n=1,2,3,.
25.6.5 ζ(k+1)=1k!n1=1nk=11n1nk(n1++nk),
k=1,2,3,.
25.6.6 ζ(2k+1)=(1)k+1(2π)2k+12(2k+1)!01B2k+1(t)cot(πt)dt,
k=1,2,3,.
25.6.7 ζ(2) =010111xydxdy.
25.6.8 ζ(2) =3k=11k2(2kk).
25.6.9 ζ(3) =52k=1(1)k1k3(2kk).
25.6.10 ζ(4) =3617k=11k4(2kk).

§25.6(ii) Derivative Values

25.6.11 ζ(0)=12ln(2π).
25.6.12 ζ′′(0)=12(ln(2π))2+12γ2124π2+γ1,

where γ1 is given by (25.2.5).

With c defined by (25.4.6) and n=1,2,3,,

25.6.13 (1)kζ(k)(2n) =2(1)n(2π)2n+1m=0kr=0m(km)(mr)(ckm)Γ(r)(2n+1)ζ(mr)(2n+1),
25.6.14 (1)kζ(k)(12n) =2(1)n(2π)2nm=0kr=0m(km)(mr)(ckm)Γ(r)(2n)ζ(mr)(2n),
25.6.15 ζ(2n) =(1)n+1(2π)2n2(2n)!(2nζ(12n)(ψ(2n)ln(2π))B2n).

§25.6(iii) Recursion Formulas

25.6.16 (n+12)ζ(2n)=k=1n1ζ(2k)ζ(2n2k),
n2.
25.6.17 (n+34)ζ(4n+2)=k=1nζ(2k)ζ(4n+22k),
n1.
25.6.18 (n+14)ζ(4n)+12(ζ(2n))2=k=1nζ(2k)ζ(4n2k),
n1.
25.6.19 (m+n+32)ζ(2m+2n+2)=(k=1m+k=1n)ζ(2k)ζ(2m+2n+22k),
m0, n0, m+n1.
25.6.20 12(22n1)ζ(2n)=k=1n1(22n2k1)ζ(2n2k)ζ(2k),
n2.

For related results see Basu and Apostol (2000).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy