About the Project
4 Elementary FunctionsHyperbolic Functions

§4.34 Derivatives and Differential Equations

4.34.1 ddzsinhz =coshz,
4.34.2 ddzcoshz =sinhz,
4.34.3 ddztanhz =sech2z,
4.34.4 ddzcschz =cschzcothz,
4.34.5 ddzsechz =sechztanhz,
4.34.6 ddzcothz =csch2z.

With a0, the general solutions of the differential equations

4.34.7 d2wdz2a2w =0,
4.34.8 (dwdz)2a2w2 =1,
4.34.9 (dwdz)2a2w2 =1,
4.34.10 dwdz+a2w2 =1,

are respectively

4.34.11 w =Acosh(az)+Bsinh(az),
4.34.12 w =(1/a)sinh(az+c),
4.34.13 w =(1/a)cosh(az+c),
4.34.14 w =(1/a)coth(az+c),

where A,B,c are arbitrary constants.

For other differential equations see Kamke (1977, pp. 289–400).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy