About the Project
Bibliography

Bibliography R

  • H. Rademacher (1938) On the partition function p(n). Proc. London Math. Soc. (2) 43 (4), pp. 241–254.
  • H. Rademacher (1973) Topics in Analytic Number Theory. Springer-Verlag, New York.
  • H. A. Ragheb, L. Shafai, and M. Hamid (1991) Plane wave scattering by a conducting elliptic cylinder coated by a nonconfocal dielectric. IEEE Trans. Antennas and Propagation 39 (2), pp. 218–223.
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • M. Rahman (2001) The Associated Classical Orthogonal Polynomials. In Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 255–279.
  • E. M. Rains (1998) Normal limit theorems for symmetric random matrices. Probab. Theory Related Fields 112 (3), pp. 411–423.
  • E. D. Rainville (1960) Special Functions. The Macmillan Co., New York.
  • A. Ralston (1965) Rational Chebyshev approximation by Remes’ algorithms. Numer. Math. 7 (4), pp. 322–330.
  • S. Ramanujan (1921) Congruence properties of partitions. Math. Z. 9 (1-2), pp. 147–153.
  • S. Ramanujan (1927) Some properties of Bernoulli’s numbers (J. Indian Math. Soc. 3 (1911), 219–234.). In Collected Papers,
  • S. Ramanujan (1962) Collected Papers of Srinivasa Ramanujan. Chelsea Publishing Co., New York.
  • Ju. M. Rappoport (1979) Tablitsy modifitsirovannykh funktsii Besselya K12+iβ(x). “Nauka”, Moscow (Russian).
  • Yu. L. Ratis and P. Fernández de Córdoba (1993) A code to calculate (high order) Bessel functions based on the continued fractions method. Comput. Phys. Comm. 76 (3), pp. 381–388.
  • J. T. Ratnanather, J. H. Kim, S. Zhang, A. M. J. Davis, and S. K. Lucas (2014) Algorithm 935: IIPBF, a MATLAB toolbox for infinite integral of products of two Bessel functions. ACM Trans. Math. Softw. 40 (2), pp. 14:1–14:12.
  • H. E. Rauch and A. Lebowitz (1973) Elliptic Functions, Theta Functions, and Riemann Surfaces. The Williams & Wilkins Co., Baltimore, MD.
  • J. Raynal (1979) On the definition and properties of generalized 6-j symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • M. Razaz and J. L. Schonfelder (1980) High precision Chebyshev expansions for Airy functions and their derivatives. Technical report University of Birmingham Computer Centre.
  • M. Razaz and J. L. Schonfelder (1981) Remark on Algorithm 498: Airy functions using Chebyshev series approximations. ACM Trans. Math. Software 7 (3), pp. 404–405.
  • REDUCE (free interactive system)
  • I. S. Reed, D. W. Tufts, X. Yu, T. K. Truong, M. T. Shih, and X. Yin (1990) Fourier analysis and signal processing by use of the Möbius inversion formula. IEEE Trans. Acoustics, Speech, Signal Processing 38, pp. 458–470.
  • M. Reed and B. Simon (1975) Methods of Modern Mathematical Physics, Vol. 2, Fourier Analysis, Self-Adjointness. Academic Press, New York.
  • M. Reed and B. Simon (1978) Methods of Modern Mathematical Physics, Vol. 4, Analysis of Operators. Academic Press, New York.
  • M. Reed and B. Simon (1979) Methods of Modern Mathematical Physics, Vol. 3, Scattering Theory. Academic Press, New York.
  • M. Reed and B. Simon (1980) Methods of Modern Mathematical Physics, Vol. 1, Functional Analysis. Elsevier, New York.
  • W. H. Reid (1972) Composite approximations to the solutions of the Orr-Sommerfeld equation. Studies in Appl. Math. 51, pp. 341–368.
  • W. H. Reid (1974a) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. I. Plane Couette flow. Studies in Appl. Math. 53, pp. 91–110.
  • W. H. Reid (1974b) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. II. The general theory. Studies in Appl. Math. 53, pp. 217–224.
  • W. H. Reid (1995) Integral representations for products of Airy functions. Z. Angew. Math. Phys. 46 (2), pp. 159–170.
  • W. H. Reid (1997a) Integral representations for products of Airy functions. II. Cubic products. Z. Angew. Math. Phys. 48 (4), pp. 646–655.
  • W. H. Reid (1997b) Integral representations for products of Airy functions. III. Quartic products. Z. Angew. Math. Phys. 48 (4), pp. 656–664.
  • W. P. Reinhardt (2018) Universality properties of Gaussian quadrature, the derivative rule, and a novel approach to Stieltjes inversion.
  • W. P. Reinhardt (2021a) Erratum to:Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (4), pp. 91.
  • W. P. Reinhardt (2021b) Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (3), pp. 56–64.
  • W. Reinhardt (1982) Complex Coordinates in the Theory of Atomic and Molecular Structure and Dynamics. Annual Review of Physical Chemistry 33, pp. 223–255.
  • K. Reinsch and W. Raab (2000) Elliptic Integrals of the First and Second Kind – Comparison of Bulirsch’s and Carlson’s Algorithms for Numerical Calculation. In Special Functions (Hong Kong, 1999), C. Dunkl, M. Ismail, and R. Wong (Eds.), pp. 293–308.
  • F. E. Relton (1965) Applied Bessel Functions. Dover Publications Inc., New York.
  • G. F. Remenets (1973) Computation of Hankel (Bessel) functions of complex index and argument by numerical integration of a Schläfli contour integral. Ž. Vyčisl. Mat. i Mat. Fiz. 13, pp. 1415–1424, 1636.
  • E. Ya. Remez (1957) General Computation Methods of Chebyshev Approximation. The Problems with Linear Real Parameters. Publishing House of the Academy of Science of the Ukrainian SSR, Kiev.
  • S. R. Rengarajan and J. E. Lewis (1980) Mathieu functions of integral orders and real arguments. IEEE Trans. Microwave Theory Tech. 28 (3), pp. 276–277.
  • R. Reynolds and A. Stauffer (2021) Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics 9 (16).
  • P. Ribenboim (1979) 13 Lectures on Fermat’s Last Theorem. Springer-Verlag, New York.
  • S. O. Rice (1954) Diffraction of plane radio waves by a parabolic cylinder. Calculation of shadows behind hills. Bell System Tech. J. 33, pp. 417–504.
  • D. St. P. Richards (Ed.) (1992) Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications. Contemporary Mathematics, Vol. 138, American Mathematical Society, Providence, RI.
  • D. St. P. Richards (2004) Total positivity properties of generalized hypergeometric functions of matrix argument. J. Statist. Phys. 116 (1-4), pp. 907–922.
  • È. Ya. Riekstynš (1991) Asymptotics and Bounds of the Roots of Equations (Russian). Zinatne, Riga.
  • B. Riemann (1859) Über die Anzahl der Primzahlen unter einer gegebenen Grösse. Monats. Berlin Akad. November 1859, pp. 671–680.
  • B. Riemann (1899) Elliptische Functionen. Teubner, Leipzig.
  • B. Riemann (1851) Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Inauguraldissertation, Göttingen.
  • F. Riesz and B. Sz.-Nagy (1990) Functional analysis. Dover Books on Advanced Mathematics, Dover Publications, Inc., New York.
  • J. Riordan (1958) An Introduction to Combinatorial Analysis. John Wiley & Sons Inc., New York.
  • J. Riordan (1979) Combinatorial Identities. Robert E. Krieger Publishing Co., Huntington, NY.
  • RISC Combinatorics Group (website) Research Institute for Symbolic Computation, Hagenberg im Mühlkreis, Austria.
  • S. Ritter (1998) On the computation of Lamé functions, of eigenvalues and eigenfunctions of some potential operators. Z. Angew. Math. Mech. 78 (1), pp. 66–72.
  • T. J. Rivlin (1969) An Introduction to the Approximation of Functions. Blaisdell Publishing Co. (Ginn and Co.), Waltham, MA-Toronto-London.
  • L. Robin (1957) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome I. Gauthier-Villars, Paris.
  • L. Robin (1958) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome II. Gauthier-Villars, Paris.
  • L. Robin (1959) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome III. Collection Technique et Scientifique du C. N. E. T. Gauthier-Villars, Paris.
  • H. P. Robinson (1972) Roots of tanx=x.
  • M. Robnik (1980) An extremum property of the n-dimensional sphere. J. Phys. A 13 (10), pp. L349–L351.
  • D. L. Rod and B. D. Sleeman (1995) Complexity in spatio-temporal dynamics. Proc. Roy. Soc. Edinburgh Sect. A 125 (5), pp. 959–974.
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.
  • S. Roman (1984) The umbral calculus. Pure and Applied Mathematics, Vol. 111, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York.
  • V. Romanovski (1929) Sur quelques classes nouvelles de polynômes orthogonaux. C. R. Acad. Sci. Paris 188, pp. 1023–1025.
  • A. Ronveaux (Ed.) (1995) Heun’s Differential Equations. The Clarendon Press Oxford University Press, New York.
  • C. C. J. Roothaan and S. Lai (1997) Calculation of 3n-j symbols by Labarthe’s method. International Journal of Quantum Chemistry 63 (1), pp. 57–64.
  • G. M. Roper (1951) Some Applications of the Lamé Function Solutions of the Linearised Supersonic Flow Equations. Technical Reports and Memoranda Technical Report 2865, Aeronautical Research Council (Great Britain).
  • R. R. Rosales (1978) The similarity solution for the Korteweg-de Vries equation and the related Painlevé transcendent. Proc. Roy. Soc. London Ser. A 361, pp. 265–275.
  • K. H. Rosen, J. G. Michaels, J. L. Gross, J. W. Grossman, and D. R. Shier (Eds.) (2000) Handbook of Discrete and Combinatorial Mathematics. CRC Press, Boca Raton, FL.
  • K. H. Rosen (2004) Elementary Number Theory and its Applications. 5th edition, Addison-Wesley, Reading, MA.
  • P. A. Rosenberg and L. P. McNamee (1976) Precision controlled trigonometric algorithms. Appl. Math. Comput. 2 (4), pp. 335–352.
  • H. Rosengren (1999) Another proof of the triple sum formula for Wigner 9j-symbols. J. Math. Phys. 40 (12), pp. 6689–6691.
  • H. Rosengren (2004) Elliptic hypergeometric series on root systems. Adv. Math. 181 (2), pp. 417–447.
  • J. B. Rosser (1939) The n-th prime is greater than nlogn. Proceedings of the London Mathematical Society 45, pp. 21–44.
  • G. Rota, D. Kahaner, and A. Odlyzko (1973) On the foundations of combinatorial theory. VIII. Finite operator calculus. J. Math. Anal. Appl. 42, pp. 684–760.
  • G. Rota (1964) On the foundations of combinatorial theory. I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2, pp. 340–368.
  • M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr. (1959) The 3-j and 6-j Symbols. The Technology Press, MIT, Cambridge, MA.
  • M. Rothman (1954a) Tables of the integrals and differential coefficients of Gi(+x) and Hi(x). Quart. J. Mech. Appl. Math. 7 (3), pp. 379–384.
  • M. Rothman (1954b) The problem of an infinite plate under an inclined loading, with tables of the integrals of Ai(±x) and Bi(±x). Quart. J. Mech. Appl. Math. 7 (1), pp. 1–7.
  • K. Rottbrand (2000) Finite-sum rules for Macdonald’s functions and Hankel’s symbols. Integral Transform. Spec. Funct. 10 (2), pp. 115–124.
  • D. H. Rouvray (1995) Combinatorics in Chemistry. In Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grötschel, and L. Lovász (Eds.), pp. 1955–1981.
  • C. H. Rowe (1931) A proof of the asymptotic series for log Γ(z) and log Γ(z+a). Ann. of Math. (2) 32 (1), pp. 10–16.
  • R. Roy (2011) Sources in the development of mathematics. Cambridge University Press, Cambridge.
  • R. Roy (2017) Elliptic and modular functions from Gauss to Dedekind to Hecke. Cambridge University Press, Cambridge.
  • W. Rudin (1966) Real and complex analysis. McGraw-Hill Book Co., New York-Toronto, Ont.-London.
  • W. Rudin (1973) Functional Analysis. McGraw-Hill Book Co., New York.
  • W. Rudin (1976) Principles of Mathematical Analysis. 3rd edition, McGraw-Hill Book Co., New York.
  • Hans-J. Runckel (1971) On the zeros of the hypergeometric function. Math. Ann. 191 (1), pp. 53–58.
  • J. Rushchitsky and S. Rushchitska (2000) On Simple Waves with Profiles in the form of some Special Functions—Chebyshev-Hermite, Mathieu, Whittaker—in Two-phase Media. In Differential Operators and Related Topics, Vol. I (Odessa, 1997), Operator Theory: Advances and Applications, Vol. 117, pp. 313–322.
  • A. Russell (1909) The effective resistance and inductance of a concentric main, and methods of computing the ber and bei and allied functions. Philos. Mag. (6) 17, pp. 524–552.
  • H. Rutishauser (1957) Der Quotienten-Differenzen-Algorithmus. Mitteilungen aus dem Institut für Angewandte Mathematik an der Eidgenössischen Technischen Hochschule in Zürich, No. 7, Birkhäuser, Basel/Stuttgart (German).
  • G. B. Rybicki (1989) Dawson’s integral and the sampling theorem. Computers in Physics 3 (2), pp. 85–87.
  • J. Rys, M. Dupuis, and H. F. King (1983) Computation of electron repulsion integrals using the Rys quadrature method. J. Comput. Chem. 4 (2), pp. 154–175.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy