Skip to main content

Fractal and Multifractal Time Series

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Data series generated by complex systems exhibit fluctuations on a wide range of time scales and/or broad distributions of the values. In bothequilibrium and non‐equilibrium situations, the natural fluctuations are often found to follow a scaling relation over several orders ofmagnitude. Such scaling laws allow for a characterization of the data and the generating complex system by fractal (or multifractal) scalingexponents, which can serve as characteristic fingerprints of the systems in comparisons with other systems and with models. Fractal scaling behavior hasbeen observed, e. g., in many data series from experimental physics, geophysics, medicine, physiology, and even social sciences. Although theunderlying causes of the observed fractal scaling are often not known in detail, the fractal or multifractal characterization can be used for generatingsurrogate (test) data, modeling the time series, and deriving predictions regarding extreme events or future...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Time series:

One dimensional array of numbers \( (x_i), i=1,\dots, N \), representing values of an observable x usually measured equidistant (or nearly equidistant) in time.

Complex system:

A system consisting of many non‐linearly interacting components. It cannot be split into simpler sub‐systems without tampering with the dynamical properties.

Scaling law:

A power law with a scaling exponent (e. g. α) describing the behavior of a quantity F (e. g., fluctuation, spectral power) as function of a scale parameter s (e. g., time scale, frequency) at least asymptotically: \( { F(s) \sim s^\alpha } \). The power law should be valid for a large range of s values, e. g., at least for one order of magnitude.

Fractal system:

A system characterized by a scaling law with a fractal, i. e., non‐integer exponent. Fractal systems are self‐similar, i. e., a magnification of a small part is statistically equivalent to the whole.

Self‐affine system:

Generalization of a fractal system, where different magnifications s and \( { s^\prime=s^H } \) have to be used for different directions in order to obtain a statistically equivalent magnification. The exponent H is called Hurst exponent. Self‐affine time series and time series becoming self‐affine upon integration are commonly denoted as fractal using a less strict terminology.

Multifractal system:

A system characterized by scaling laws with an infinite number of different fractal exponents. The scaling laws must be valid for the same range of the scale parameter.

Crossover:

Change point in a scaling law, where one scaling exponent applies for small scale parameters and another scaling exponent applies for large scale parameters. The center of the crossover is denoted by its characteristic scale parameter \( { s_\times } \) in this article.

Persistence:

In a persistent time series, a large value is usually (i. e., with high statistical preference) followed by a large value and a small value is followed by a small value. A fractal scaling law holds at least for a limited range of scales.

Short‐term correlations:

Correlations that decay sufficiently fast that they can be described by a characteristic correlation time scale; e. g., exponentially decaying correlations. A crossover to uncorrelated behavior is observed on larger scales.

Long‐term correlations:

Correlations that decay sufficiently slow that a characteristic correlation time scale cannot be defined; e. g., power‐law correlations with an exponent between 0 and 1. Power‐law scaling is observed on large time scales and asymptotically. The term long‐range correlations should be used if the data is not a time series.

Non‐stationarities:

If the mean or the standard deviation of the data values change with time, the weak definition of stationarity is violated. The strong definition of stationarity requires that all moments remain constant, i. e., the distribution density of the values does not change with time. Non‐stationarities like monotonous, periodic, or step‐like trends are often caused by external effects. In a more general sense, changes in the dynamics of the system also represent non‐stationarities.

Bibliography

  1. Mandelbrot BB, van Ness JW (1968) Fractional Brownian motions, fractional noisesand applications. SIAM Review 10:422

    MathSciNet  ADS  MATH  Google Scholar 

  2. Mandelbrot BB, Wallis JR (1969) Some long-run properties of geophysical records.Water Resour Res 5:321–340

    ADS  Google Scholar 

  3. Mandelbrot BB (1999) Multifractals and 1/f noise: wild self-affinity in physics.Springer, Berlin

    MATH  Google Scholar 

  4. Hurst HE (1951) Long-term storage capacity of reservoirs. Tran Amer Soc Civ Eng116:770

    Google Scholar 

  5. Hurst HE, Black RP, Simaika YM (1965) Long-term storage: an experimental study.Constable, London

    Google Scholar 

  6. Feder J (1988) Fractals. Plenum Press, New York

    MATH  Google Scholar 

  7. BarnsleyMF (1993) Fractals everywhere. Academic Press, San Diego

    MATH  Google Scholar 

  8. Bunde A, Havlin S (1994) Fractals in science. Springer,Berlin

    MATH  Google Scholar 

  9. Jorgenssen PET (2000) Analysis and probability: Wavelets, signals, fractals.Springer, Berlin

    Google Scholar 

  10. Bunde A, Kropp J, Schellnhuber HJ (2002) The science of disasters –climate disruptions, heart attacks, and market crashes. Springer, Berlin

    Google Scholar 

  11. Kantz H, Schreiber T (2003) Nonlinear time series analysis. CambridgeUniversity Press, Cambridge

    Google Scholar 

  12. Peitgen HO, Jürgens H, Saupe D (2004) Chaos and fractals. Springer,Berlin

    Google Scholar 

  13. Sornette D (2004) Critical phenomena in natural sciences. Springer,Berlin

    MATH  Google Scholar 

  14. Peng CK, Mietus J, Hausdorff JM, Havlin S, Stanley HE, Goldberger AL (1993)Long-range anti-correlations and non-Gaussian behaviour of the heartbeat. Phys Rev Lett 70:1343

    ADS  Google Scholar 

  15. Bunde A, Havlin S, Kantelhardt JW, Penzel T, Peter JH, Voigt K (2000)Correlated and uncorrelated regions in heart-rate fluctuations during sleep. Phys Rev Lett 85:3736

    ADS  Google Scholar 

  16. Vyushin D, Zhidkov I, Havlin S, Bunde A, Brenner S (2004) Volcanic forcingimproves atmosphere-ocean coupled general circulation model scaling performance. Geophys Res Lett 31:L10206

    ADS  Google Scholar 

  17. Koscielny-Bunde E, Bunde A, Havlin S, Roman HE, Goldreich Y, Schellnhuber HJ(1998) Indication of a universal persistence law governing atmospheric variability. Phys Rev Lett 81:729

    ADS  Google Scholar 

  18. Box GEP, Jenkins GM, Reinsel GC (1994) Time-series analysis. Prentice Hall,New Jersey

    MATH  Google Scholar 

  19. Chatfield C (2003) The analysis of time series. An introduction. Taylor &Francis, Boca Raton

    Google Scholar 

  20. Schmitt DT, Schulz M (2006) Analyzing memory effects of complex systems fromtime series. Phys Rev E 73:056204

    ADS  Google Scholar 

  21. Taqqu MS, Teverovsky V, Willinger W (1995) Estimators for long-rangedependence: An empirical study. Fractals 3:785

    MATH  Google Scholar 

  22. Delignieresa D, Ramdania S, Lemoinea L, Torrea K, Fortesb M, Ninot G (2006)Fractal analyses for ‘short’ time series: A re-assessment of classical methods. J Math Psychol 50:525

    Google Scholar 

  23. Mielniczuk J, Wojdyllo P (2007) Estimation of Hurst exponent revisited. CompStat Data Anal 51:4510

    MathSciNet  MATH  Google Scholar 

  24. Hunt GA (1951) Random Fourier transforms. Trans Amer Math Soc71:38

    MathSciNet  MATH  Google Scholar 

  25. Rangarajan G, Ding M (2000) Integrated approach to the assessment of longrange correlation in time series data. Phys Rev E 61:4991

    MathSciNet  ADS  Google Scholar 

  26. Peng CK, Buldyrev SV, Goldberger AL, Havlin S, Sciortino F, Simons M, StanleyHE (1992) Long-range correlations in nucleotide sequences. Nature 356:168

    ADS  Google Scholar 

  27. Goupillaud P, Grossmann A, Morlet J (1984) Cycle-octave and related transformsin seismic signal analysis. Geoexploration 23:85

    Google Scholar 

  28. Daubechies I (1988) Orthogonal bases of compactly supported wavelets. CommunPure Appl Math 41:909

    MathSciNet  MATH  Google Scholar 

  29. BogachevM, Schumann AY, Kantelhardt JW, Bunde A (2009)On distinguishing long-term and short-term memory in finitedata. Physica A, to be published

    Google Scholar 

  30. Kantelhardt JW, Roman HE, Greiner M (1995) Discrete wavelet approach tomultifractality. Physica A 220:219

    ADS  Google Scholar 

  31. Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994)Mosaic organization of DNA nucleotides. Phys Rev E 49:1685

    ADS  Google Scholar 

  32. Ashkenazy Y, Ivanov PC, Havlin S, Peng CK, Goldberger AL, Stanley HE (2001)Magnitude and sign correlations in heartbeat fluctuations. Phys Rev Lett 86:1900

    ADS  Google Scholar 

  33. Kantelhardt JW, Zschiegner SA, Bunde A, Havlin S, Koscielny-Bunde E, StanleyHE (2002) Multifractal detrended fluctuation analysis of non-stationary time series. Physica A 316:87

    ADS  MATH  Google Scholar 

  34. Gu GF, Zhou WX (2006) Detrended fluctuation analysis for fractals andmultifractals in higher dimensions. Phys Rev E 74:061104

    ADS  Google Scholar 

  35. Kantelhardt JW, Koscielny-Bunde E, Rego HHA, Havlin S, Bunde A (2001)Detecting long-range correlations with detrended fluctuation analysis. Physica A 295:441

    ADS  MATH  Google Scholar 

  36. Hu K, Ivanov PC, Chen Z, Carpena P, Stanley HE (2001) Effect of trends ondetrended fluctuation analysis. Phys Rev E 64:011114

    ADS  Google Scholar 

  37. Chen Z, Ivanov PC, Hu K, Stanley HE (2002) Effect of non-stationarities ondetrended fluctuation analysis. Phys Rev E 65:041107

    ADS  Google Scholar 

  38. Chen Z, Hu K, Carpena P, Bernaola-Galvan P, Stanley HE, Ivanov PC (2005)Effect of nonlinear filters on detrended fluctuation analysis. Phys Rev E 71:011104

    ADS  Google Scholar 

  39. Grau-Carles P (2006) Bootstrap testing for detrended fluctuation analysis.Physics A 360:89

    ADS  Google Scholar 

  40. Nagarajan R (2006) Effect of coarse-graining on detrended fluctuationanalysis. Physica A 363:226

    ADS  Google Scholar 

  41. Heneghan C, McDarby G (2000) Establishing the relation between detrendedfluctuation analysis and power spectral density analysis for stochastic processes. Phys Rev E 62:6103

    ADS  Google Scholar 

  42. Weron R (2002) Estimating long-range dependence: finite sample properties andconfidence intervals. Physica A 312:285

    MathSciNet  ADS  MATH  Google Scholar 

  43. Bashan A, Bartsch R, Kantelhardt JW, Havlin S (2008) Comparison of detrendingmethods for fluctuation analysis. Physica A 387:580

    Google Scholar 

  44. Bahar S, Kantelhardt JW, Neiman A, Rego HHA, Russell DF, Wilkens L, Bunde A,Moss F (2001) Long range temporal anti-correlations in paddlefish electro-receptors. Europhys Lett 56:454

    ADS  Google Scholar 

  45. Bartsch R, Henning T, Heinen A, Heinrichs S, Maass P (2005) Statisticalanalysis of fluctuations in the ECG morphology. Physica A 354:415

    ADS  Google Scholar 

  46. Santhanam MS, Bandyopadhyay JN, Angom D (2006) Quantum spectrum as a timeseries: fluctuation measures. Phys Rev E 73:015201

    ADS  Google Scholar 

  47. Ashkenazy Y, Havlin S, Ivanov PC, Peng CK, Schulte-Frohlinde V, Stanley HE(2003) Magnitude and sign scaling in power-law correlated time series. Physica A 323:19

    ADS  MATH  Google Scholar 

  48. Kalisky T, Ashkenazy Y, Havlin S (2005) Volatility of linear and nonlineartime series. Phys Rev E 72:011913

    MathSciNet  ADS  Google Scholar 

  49. Mantegna RN, Stanley HE (2000) An introduction to econophysics –correlations and complexity in finance. Cambridge Univ Press, Cambridge

    Google Scholar 

  50. Bouchaud JP, Potters M (2003) Theory of financial risks: from statisticalphysics to risk management. Cambridge Univ Press, Cambridge

    Google Scholar 

  51. Alessio E, Carbone A, Castelli G, Frappietro V (2002) Second-order movingaverage and scaling of stochastic time series. Europ Phys J B 27:197

    ADS  Google Scholar 

  52. Carbone A, Castelli G, Stanley HE (2004) Analysis of clusters formed by themoving average of a long-range correlated time series. Phys Rev E 69:026105

    ADS  Google Scholar 

  53. Carbone A, Castelli G, Stanley HE (2004) Time-dependent Hurst exponent infinancial time series. Physica A 344:267

    MathSciNet  ADS  Google Scholar 

  54. Alvarez-Ramirez J, Rodriguez E, Echeverría JC (2005) Detrending fluctuationanalysis based on moving average filtering. Physica A 354:199

    Google Scholar 

  55. Kiyono K, Struzik ZR, Aoyagi N, Togo F, Yamamoto Y (2005) Phase transition ina healthy human heart rate. Phys Rev Lett 95:058101

    ADS  Google Scholar 

  56. Staudacher M, Telser S, Amann A, Hinterhuber H, Ritsch-Marte M (2005) A newmethod for change-point detection developed for on-line analysis of the heart beat variability during sleep. PhysicaA349:582

    ADS  Google Scholar 

  57. Telser S, Staudacher M, Hennig B, Ploner Y, Amann A, Hinterhuber H,Ritsch-Marte M (2007) Temporally resolved fluctuation analysisof sleep-ECG. J Biol Phys 33:190

    Google Scholar 

  58. Chianca CV, Ticona A, Penna TJP (2005) Fourier-detrended fluctuation analysis.Physica A 357:447

    ADS  Google Scholar 

  59. Jánosi IM, Müller R (2005) Empirical mode decomposition and correlationproperties of long daily ozone records. Phys Rev E 71:056126

    Google Scholar 

  60. Nagarajan R, Kavasseri RG (2005) Minimizing the effect of trends on detrendedfluctuation analysis of long-range correlated noise. Physica A 354:182

    ADS  Google Scholar 

  61. Nagarajan R (2006) Reliable scaling exponent estimation of long-rangecorrelated noise in the presence of random spikes. Physica A 366:1

    ADS  Google Scholar 

  62. Rodriguez E, Echeverria JC, Alvarez-Ramirez J (2007) Detrending fluctuationanalysis based on high-pass filtering. Physica A 375:699

    ADS  Google Scholar 

  63. Grech D, Mazur Z (2005) Statistical properties of old and new techniques indetrended analysis of time series. Acta Phys Pol B 36:2403

    ADS  Google Scholar 

  64. Xu L, Ivanov PC, Hu K, Chen Z, Carbone A, Stanley HE (2005) Quantifyingsignals with power-law correlations: a comparative study of detrended fluctuation analysis and detrended moving average techniques. Phys Rev E71:051101

    ADS  Google Scholar 

  65. Barabási AL, Vicsek T (1991) Multifractality of self-affine fractals. PhysRev A 44:2730

    Google Scholar 

  66. Bacry E, Delour J, Muzy JF (2001) Multifractal random walk. Phys Rev E64:026103

    ADS  Google Scholar 

  67. Muzy JF, Bacry E, Arneodo A (1991) Wavelets and multifractal formalism forsingular signals: Application to turbulence data. Phys Rev Lett 67:3515

    ADS  Google Scholar 

  68. Muzy JF, Bacry E, Arneodo A (1994) The multifractal formalism revisited withwavelets. Int J Bifurcat Chaos 4:245

    MathSciNet  MATH  Google Scholar 

  69. Arneodo A, Bacry E, Graves PV, Muzy JF (1995) Characterizing long-rangecorrelations in DNA sequences from wavelet analysis. Phys Rev Lett 74:3293

    ADS  Google Scholar 

  70. Arneodo A, Manneville S, Muzy JF (1998) Towards log-normal statistics in highReynolds number turbulence. Eur Phys J B 1:129

    ADS  Google Scholar 

  71. Arneodo A, Audit B, Decoster N, Muzy JF, Vaillant C (2002) Wavelet basedmultifractal formalism: applications to DNA sequences, satellite images of the cloud structure, and stock market data. In: Bunde A, Kropp J, SchellnhuberHJ (eds) The science of disaster: climate disruptions, market crashes, and heart attacks. Springer, Berlin

    Google Scholar 

  72. Kantelhardt JW, Rybski D, Zschiegner SA, Braun P, Koscielny-Bunde E, Livina V,Havlin S, Bunde A (2003) Multifractality of river runoff and precipitation: comparison of fluctuation analysis and wavelet methods. Physica A330:240

    ADS  MATH  Google Scholar 

  73. Oswiecimka P, Kwapien J, Drozdz S (2006) Wavelet versus detrended fluctuationanalysis of multifractal structures. Phys Rev E 74:016103

    ADS  Google Scholar 

  74. Ivanov PC, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR,Stanley HE (1999) Multifractality in human heartbeat dynamics. Nature 399:461

    ADS  Google Scholar 

  75. Amaral LAN, Ivanov PC, Aoyagi N, Hidaka I, Tomono S, Goldberger AL, StanleyHE, Yamamoto Y (2001) Behavioral-independence features of complex heartbeat dynamics. Phys Rev Lett 86:6026

    ADS  Google Scholar 

  76. Bogachev M, Schumann AY, Kantelhardt JW (2008) (in preparation)

    Google Scholar 

  77. Bunde A, Eichner JF, Kantelhardt JW, Havlin S (2005) Long-term memory: A natural mechanism for the clustering of extreme events and anomalous residual times in climate records. Phys Rev Lett 94:048701

    ADS  Google Scholar 

  78. Bunde A, Eichner JF, Kantelhardt JW, Havlin S (2003) The effect of long-termcorrelations on the return periods of rare events. Physica A 330:1

    MathSciNet  ADS  MATH  Google Scholar 

  79. Altmann EG, Kantz H (2005) Recurrence time analysis, long-term correlations,and extreme events. Phys Rev E 71:056106

    MathSciNet  ADS  Google Scholar 

  80. Eichner JF, Kantelhardt JW, Bunde A, Havlin S (2007) Statistics of returnintervals in long-term correlated records. Phys Rev E 75:011128

    ADS  Google Scholar 

  81. Eichner JF, Kantelhardt JW, Bunde A, Havlin S (2006) Extreme value statisticsin records with long-term persistence. Phys Rev E 73:016130

    ADS  Google Scholar 

  82. Bogachev MI, Eichner JF, Bunde A (2007) Effect of nonlinear correlations onthe statistics of return intervals in multifractal data sets. Phys Rev Lett 99:240601

    ADS  Google Scholar 

  83. Storch HV, Zwiers FW (2001) Statistical analysis in climate research.Cambridge Univ Press, Cambridge

    Google Scholar 

  84. Newell GF, Rosenblatt M (1962) Ann Math Statist33:1306

    MathSciNet  MATH  Google Scholar 

  85. Sornette D, Knopoff L (1997) The paradox of the expected time until the nextearthquake. Bull Seism Soc Am 87:789

    Google Scholar 

  86. Fisher RA, Tippett LHC (1928) Limiting forms of the frequency distribution ofthe largest or smallest member of a sample. Proc Camb Phi Soc 24:180

    ADS  Google Scholar 

  87. Gumbel EJ (1958) Statistics of extremes. Columbia University Press, NewYork

    MATH  Google Scholar 

  88. Galambos J (1978) The asymptotic theory of extreme order statistics. Wiley,New York

    MATH  Google Scholar 

  89. Leadbetter MR, Lindgren G, Rootzen H (1983) Extremes and related properties ofrandom sequences and processes. Springer, New York

    MATH  Google Scholar 

  90. Galambos J, Lechner J, Simin E (1994) Extreme value theory and applications.Kluwer, Dordrecht

    MATH  Google Scholar 

  91. te Chow V (1964) Handbook of applied hydrology. McGraw-Hill, NewYork

    Google Scholar 

  92. Raudkivi AJ (1979) Hydrology. Pergamon Press,Oxford

    Google Scholar 

  93. Rasmussen PF, Gautam N (2003) Alternative PWM-estimators of the Gumbeldistribution. J Hydrol 280:265

    Google Scholar 

  94. Mandelbrot BB (1971) A fast fractional Gaussian noise generator. Water ResourRes 7:543

    ADS  Google Scholar 

  95. Voss RF (1985) In: Earnshaw RA (ed) Fundamental algorithms in computergraphics. Springer, Berlin

    Google Scholar 

  96. Makse HA, Havlin S, Schwartz M, Stanley HE (1996) Method for generatinglong-range correlations for large systems. Phys Rev E 53:5445

    ADS  Google Scholar 

  97. Rodriguez-Iturbe I, Rinaldo A (1997) Fractal river basins – change andself-organization. Cambridge Univ Press, Cambridge

    Google Scholar 

  98. Schreiber T, Schmitz A (1996) Improved surrogate data for nonlinearity tests.Phys Rev Lett 77:635

    ADS  Google Scholar 

  99. Schreiber T, Schmitz A (2000) Surrogate time series. Physica D142:346

    MathSciNet  ADS  MATH  Google Scholar 

  100. Koscielny-Bunde E, Kantelhardt JW, Braun P, Bunde A, Havlin S (2006) Long-termpersistence and multifractality of river runoff records. J Hydrol 322:120

    Google Scholar 

  101. Kantelhardt JW, Koscielny-Bunde E, Rybski D, Braun P, Bunde A, Havlin S(2006) Long-term persistence and multifractality of precipitation and river runoff records. J Geophys Res Atmosph 111:D01106

    ADS  Google Scholar 

Download references

Acknowledgment

We thank Ronny Bartsch, Amir Bashan, Mikhail Bogachev, Armin Bunde, Jan Eichner, Shlomo Havlin, Diego Rybski, Aicko Schumann, and StephanZschiegner for helpful discussions and contribution. This work has been supported by the Deutsche Forschungsgemeinschaft (grant KA 1676/3) and the European Union (STREPproject DAPHNet, grant 018474-2).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Kantelhardt, J.W. (2009). Fractal and Multifractal Time Series. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_221

Download citation

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy