Abstract
We study the spread of Rényi entropy between two halves of a Sachdev-Ye-Kitaev (SYK) chain of Majorana fermions, prepared in a thermofield double (TFD) state. The SYK chain model is a model of chaotic many-body systems, which describes a one-dimensional lattice of Majorana fermions, with spatially local random quartic interaction. We find that for integer Rényi index n > 1, the Rényi entanglement entropy saturates at a parametrically smaller value than expected. This implies that the TFD state of the SYK chain does not rapidly thermalize, despite being maximally chaotic: instead, it rapidly approaches a prethermal state. We compare our results to the signatures of thermalization observed in other quenches in the SYK model, and to intuition from nearly-AdS2 gravity.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
J.M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 2046 (1991) 2046.
M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994) 888 [cond-mat/9403051].
M. Rigol, V. Dunjko and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452 (2008) 854 [arXiv:0708.1324].
T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].
H. Liu and S.J. Suh, Entanglement Tsunami: universal scaling in holographic thermalization, Phys. Rev. Lett. 112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].
H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev. D 89 (2014) 066012 [arXiv:1311.1200] [INSPIRE].
E.H. Lieb and D. Robinson, The finite group velocity of quantum spin systems, Commun. Math. Phys. 28 (1972) 251.
Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].
S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].
D.A. Roberts and B. Swingle, Lieb-Robinson bound and the butterfly effect in quantum field theories, Phys. Rev. Lett. 117 (2016) 091602 [arXiv:1603.09298] [INSPIRE].
M. Mezei and D. Stanford, On entanglement spreading in chaotic systems, JHEP 05 (2017) 065 [arXiv:1608.05101] [INSPIRE].
T. Hartman and N. Afkhami-Jeddi, Speed Limits for Entanglement, arXiv:1512.02695 [INSPIRE].
T. Hartman, S.A. Hartnoll and R. Mahajan, An upper bound on transport, arXiv:1706.00019 [INSPIRE].
R. Nandkishore and D.A. Huse, Many body localization and thermalization in quantum statistical mechanics, Ann. Rev. Condensed Matter Phys. 6 (2015) 15 [arXiv:1404.0686] [INSPIRE].
Y. Huang, Y. Zhang and X. Chen, Out-of-time-ordered correlators in many-body localized systems, Annalen Phys. 529 (2017) 1600318 [arXiv:1608.01091] [INSPIRE].
R. Fan, P. Zhang, H. Shen and H. Zhai, Out-of-time-order correlation for many-body localization, Sci. Bull. 62 (2017) 707 [arXiv:1608.01914] [INSPIRE].
Y. Chen, Quantum logarithmic butterfly in many body localization, arXiv:1608.02765 [INSPIRE].
B. Swingle and D. Chowdhury, Slow scrambling in disordered quantum systems, Phys. Rev. B 95 (2017) 060201 [arXiv:1608.03280] [INSPIRE].
S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
A. Kitaev, A simple model of quantum holography, talks given at the KITP Program: Entanglement in Strongly-Correlated Quantum Matter, April 7 and May 27, Santa Barbara, U.S.A. (2015).
J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].
S. Sachdev, Bekenstein-Hawking entropy and strange metals, Phys. Rev. X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].
R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].
D.J. Gross and V. Rosenhaus, A generalization of Sachdev-Ye-Kitaev, JHEP 02 (2017) 093 [arXiv:1610.01569] [INSPIRE].
S. Banerjee and E. Altman, Solvable model for a dynamical quantum phase transition from fast to slow scrambling, Phys. Rev. B 95 (2017) 134302 [arXiv:1610.04619] [INSPIRE].
Z. Bi, C.-M. Jian, Y.-Z. You, K.A. Pawlak and C. Xu, Instability of the non-Fermi liquid state of the Sachdev-Ye-Kitaev Model, Phys. Rev. B 95 (2017) 205105 [arXiv:1701.07081] [INSPIRE].
Y. Gu, A. Lucas and X.-L. Qi, Energy diffusion and the butterfly effect in inhomogeneous Sachdev-Ye-Kitaev chains, SciPost Phys. 2 (2017) 018 [arXiv:1702.08462] [INSPIRE].
X.-Y. Song, C.-M. Jian and L. Balents, A strongly correlated metal built from Sachdev-Ye-Kitaev models, arXiv:1705.00117 [INSPIRE].
Y. Chen, H. Zhai and P. Zhang, Tunable quantum chaos in the Sachdev-Ye-Kitaev model coupled to a thermal bath, JHEP 07 (2017) 150 [arXiv:1705.09818] [INSPIRE].
X. Chen, R. Fan, Y. Chen, H. Zhai and P. Zhang, Competition between chaotic and non-chaotic phases in a quadratically coupled Sachdev-Ye-Kitaev model, arXiv:1705.03406 [INSPIRE].
S.-K. Jian and H. Yao, Solvable SYK models in higher dimensions: a new type of many-body localization transition, arXiv:1703.02051 [INSPIRE].
W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [arXiv:1610.08917] [INSPIRE].
M. Berkooz, P. Narayan, M. Rozali and J. Simón, Higher dimensional generalizations of the SYK model, JHEP 01 (2017) 138 [arXiv:1610.02422] [INSPIRE].
G. Turiaci and H. Verlinde, Towards a 2d QFT analog of the SYK model, arXiv:1701.00528 [INSPIRE].
E. Witten, An SYK-like model without disorder, arXiv:1610.09758 [INSPIRE].
I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].
J. Murugan, D. Stanford and E. Witten, More on supersymmetric and 2D analogs of the SYK model, JHEP 08 (2017) 146 [arXiv:1706.05362] [INSPIRE].
W. Israel, Thermo-field dynamics of black holes, Phys. Lett. A 57 (1976) 107.
K. Jensen, Chaos in AdS 2 holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].
A. Eberlein, V. Kasper, S. Sachdev and J. Steinberg, Quantum quench of the Sachdev-Ye-Kitaev model, arXiv:1706.07803 [INSPIRE].
I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS 2 gravity, arXiv:1707.02325 [INSPIRE].
J. Sonner and M. Vielma, Eigenstate thermalization in the Sachdev-Ye-Kitaev model, arXiv:1707.08013 [INSPIRE].
J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].
M. Blake, Universal diffusion in incoherent black holes, Phys. Rev. D 94 (2016) 086014 [arXiv:1604.01754] [INSPIRE].
M. Blake and A. Donos, Diffusion and chaos from near AdS 2 horizons, JHEP 02 (2017) 013 [arXiv:1611.09380] [INSPIRE].
M.M. Wolf, F. Verstraete, M.B. Hastings and J.I. Cirac, Area laws in quantum systems: mutual information and correlations, Phys. Rev. Lett. 100 (2008) 070502 [arXiv:0704.3906].
P. Hosur, X.-L. Qi, D.A. Roberts and B. Yoshida, Chaos in quantum channels, JHEP 02 (2016) 004 [arXiv:1511.04021] [INSPIRE].
P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].
J.S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S.H. Shenker et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [arXiv:1611.04650] [INSPIRE].
A. Kitaev, New Results in the SYK Model, talk given at IAS Workshop on the Chaos, the SYK Model and AdS2, October 17-19, Princeton, U.S.A. (2016).
M. Mezei, On entanglement spreading from holography, JHEP 05 (2017) 064 [arXiv:1612.00082] [INSPIRE].
X. Dong, The gravity dual of Renyi entropy, Nature Commun. 7 (2016) 12472 [arXiv:1601.06788] [INSPIRE].
S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].
D. Bagrets, A. Altland and A. Kamenev, Power-law out of time order correlation functions in the SYK model, Nucl. Phys. B 921 (2017) 727 [arXiv:1702.08902] [INSPIRE].
T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the conformal bootstrap, JHEP 08 (2017) 136 [arXiv:1705.08408] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1708.00871
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Gu, Y., Lucas, A. & Qi, XL. Spread of entanglement in a Sachdev-Ye-Kitaev chain. J. High Energ. Phys. 2017, 120 (2017). https://doi.org/10.1007/JHEP09(2017)120
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2017)120