Skip to main content
Log in

Inverse unsaturated-zone flow modeling for groundwater recharge estimation: a regional spatial nonstationary approach

Modélisation inverse des écoulements dans la zone non saturée pour l’estimation de la recharge des eaux souterraines: une approche régionale spatiale non stationnaire

Modelado inverso del flujo en la zona no saturada para la estimación de la recarga de aguas subterráneas: un enfoque regional espacial no estacionario

地下水补给估算的非饱和带流反演模型:区域空间非平稳方法

Modelagem inversa de fluxo na zona não saturada para estimativa de recarga de águas subterrâneas: uma abordagem espacial regional não-estacionária

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater recharge estimation (GRE), particularly at a regional scale, is an important challenge in hydrogeology. Unsaturated zone flow (UZF) modeling is now being used increasingly for GRE, though its validity relies on the accurate estimation of the soil hydraulic parameters (SHPs). In this study, a regional spatial-nonstationarity-based inverse-UZF-modeling framework is developed for GRE. The regional-scale investigation is achieved using a multiple column approach and by applying the software package HYDRUS-1D. Considering the inverse modeling, the SHPs are calibrated against observed data from the stations of a large-scale monitoring network. Moreover, a nonstationary kriging technique is implemented to provide a regional map of recharge from the calculated values. Additionally, to report probability maps of recharge, a probabilistic approach through the sequential Gaussian simulation algorithm is incorporated. The proposed methodology has been tested at 100 stations of the Oklahoma Mesonet network across Oklahoma (USA) for the period 2014–2019. The comparison between the simulated and observed pressure head data endorses the performance of the regional-scale inverse UZF modeling. The distribution of recharge in the produced map increases from northwest to southeast, following the similar pattern of rainfall. Finally, the probabilistic approach results in an e-type (mean) map yielding an expected value of 166 mm/year statewide mean recharge, and 90% confidence interval maps that provide a workable range of 139–194 mm/year for planning purposes. With the rapid expansion of large-scale monitoring networks, this study can be applied to other areas where such observed data exist.

Résumé

L’estimation de la recharge des eaux souterraines (RES), en particulier à l’échelle régionale, est un défi important en hydrogéologie. La modélisation de l’écoulement en zone non saturée (EZNS) est de plus en plus utilisée pour l’évaluation de la recharge des eaux souterraines, bien que sa validité dépende de l’estimation précise des paramètres hydrauliques du sol (PHSs). Dans cette étude, un cadre régional de modélisation inverse de l’EZNS, basé sur des données non stationnaires, est développé pour la RES. L’investigation à l’échelle régionale est réalisée en utilisant une approche à colonnes multiples et en appliquant l’ensemble des modules du logiciel HYDRUS-1D. En considérant la modélisation inverse, les PHSs sont calibrés par rapport aux données observées des stations d’un réseau de surveillance à grande échelle. De plus, une technique de krigeage non stationnaire est mise en œuvre pour fournir une carte régionale de la recharge à partir des valeurs calculées. En outre, pour présenter des cartes de probabilité de la recharge, une approche probabiliste via l’algorithme de simulation gaussienne séquentielle est incorporée. La méthodologie proposée a été testée sur 100 stations du réseau Oklahoma Mesonet à travers l’Oklahoma (Etats-Unis d’Amérique) pour la période 2014–2019. La comparaison entre les données de hauteur de pression simulées et observées confirme la performance de la modélisation EZNS inverse à l’échelle régionale. La distribution de la recharge dans la carte produite augmente du nord-ouest au sud-est, identique à la distribution des précipitations. Enfin, l’approche probabiliste aboutit à une carte de type e (moyenne) donnant une valeur attendue de 166 mm/an de recharge moyenne à l’échelle de l’Etat, et des cartes d’intervalles de confiance à 90 % qui fournissent une plage exploitable de 139 à 194 mm/an à des fins de planification. Avec l’expansion rapide des réseaux de surveillance à grande échelle, cette étude peut être appliquée à d’autres zones pour lesquelles de telles données d’observation existent.

Resumen

La estimación de la recarga de las aguas subterráneas (GRE), especialmente a escala regional, es un desafío importante en hidrogeología. El modelado del flujo de la zona no saturada (UZF) se utiliza cada vez más para la GRE, aunque su validez depende de la estimación precisa de los parámetros hidráulicos del suelo (SHPs). En este estudio, se desarrolla un marco de modelado UZF inverso basado en el espacio no estacionario para la GRE. La investigación a escala regional se logra utilizando un enfoque de columnas múltiples y aplicando el paquete de software HYDRUS-1D. Teniendo en cuenta la modelización inversa, los UZF se calibran con los datos observados de las estaciones de una red de monitoreo a gran escala. Además, se aplica una técnica de kriging no estacionaria para proporcionar un mapa regional de recarga a partir de los valores calculados. Además, para informar de los mapas de probabilidad de la recarga, se incorpora un enfoque probabilístico a través del algoritmo de simulación gaussiana secuencial. La metodología propuesta ha sido probada en 100 estaciones de la red Oklahoma Mesonet a lo largo de Oklahoma (EEUU) para el periodo 2014–2019. La comparación entre los datos de carga de presión simulados y observados avala el rendimiento de la modelización UZF inversa a escala regional. La distribución de la recarga en el mapa producido aumenta del noroeste al sureste, siguiendo el patrón similar de las precipitaciones. Finalmente, el enfoque probabilístico da como resultado un mapa de tipo e (medio) que arroja un valor esperado de 166 mm/año de recarga media en todo el estado, y mapas de intervalo de confianza del 90% que proporcionan un rango viable de 139 a 194 mm/año para fines de planificación. Con la rápida expansión de las redes de monitoreo a gran escala, este estudio puede aplicarse a otras áreas donde existan tales datos observados.

摘要

地下水补给量估算(GRE), 尤其是在区域范围内, 是水文地质学的一个重要挑战。非饱和带流(UZF)模型目前正越来越多地用于GRE, 尽管其有效性依赖于对土壤水力参数(SHP)的准确估计。本研究为GRE开发了一个基于区域空间非平稳的UZF反演模型框架。采用多列方法和HYDRUS-1D软件包实现了区域尺度调查。考虑到反演建模, 根据大型监测网络站点的观测数据对SHP进行校准, 并基于计算值采用非平稳克里金技术绘制了区域补给图。此外, 采用了序贯高斯模拟算法的概率方法对补给概率进行了分析。该方法对美国俄克拉荷马州中网2014–2019年期间的100个站点进行了测试, 模拟水头与观测水头数据之间的比较证实了区域尺度UZF反演模型的性能。生成图中的补给分布由西北向东南增加, 遵循类似的降雨模式。最后, 概率方法生成e型(均值)图得到的全州平均补给量预期值为166 mm/年, 90%的置信区间为规划目的提供了139–194 mm/年的可行范围。随着大规模监测网络的迅速扩展, 这项研究可以应用于存在此类观测数据的其他领域。

Resumo

Estimativa de recarga das águas subterrâneas (ERAS), particularmente em escala regional, é um desafio importante na hidrogeologia. A modelagem do fluxo da zona não saturada (FZNS) está, agora, sendo usada amplamente para ERAS, apesar de sua validação estar na estimativa precisa dos parâmetros hidráulicos do solo (PHS). Nesse estudo, uma estrutura baseada em uma modelagem inversa do FZNS espacial, regional, não estacionária foi desenvolvida para a ERAS. A investigação de escala-regional foi atingida utilizando uma abordagem de colunas múltiplas e pela aplicação do pacote de softwares HYDRUS-1D. Considerando a modelagem inversa, os PHS foram calibrados em contraste aos dados observados das estações da rede de monitoramento de larga escala. Além disso, uma técnica de krigagem não estacionária é implementada para fornecer um mapa regional da recarga para os valores calculados. Adicionalmente, para reportar os mapas de probabilidade da recarga, uma abordagem probabilística através do algoritmo de simulação Gaussiana sequencial foi incorporada. A metodologia proposta foi testada em 100 estações da rede Oklahoma Mesonet através de Oklahoma (EUA) pelo período 2014–2019. A comparação entre os dados principais de pressão simulados e observados endossam a performance da modelagem inversa do FZNS em escala regional. A distribuição da recarga no mapa produzido aumenta de noroeste para sudeste, seguindo o padrão similar da precipitação. Finalmente, os resultados da abordagem probabilística em um mapa (média) etype produzindo um valor esperado de 166 mm/ano de recarga média em todo o estado, e 90% nos mapas de intervalo de confiança que fornecem uma amplitude trabalhável de 139 a 194 mm/ano para planejar propósitos. Com a expansão rápida das redes de monitoramento em larga escala, esse estudo pode ser aplicado para outras áreas onde tais dados observados existem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adane ZA, Nasta P, Zlotnik V, Wedin D (2018) Impact of grassland conversion to forest on groundwater recharge in the Nebraska Sand Hills. J Hydrol: Regional Stud 15:171–183

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56, FAO, Rome

  • Assefa KA, Woodbury AD (2013) Transient, spatially varied groundwater recharge modeling. Water Resour Res 49(8):4593–4606

    Article  Google Scholar 

  • Baskan O, Cebel H, Akgul S, Erpul G (2010) Conditional simulation of USLE/RUSLE soil erodibility factor by geostatistics in a Mediterranean catchment, Turkey. Environ Earth Sci 60(6):1179–1187

    Article  Google Scholar 

  • Bohling GC (2007) Introduction to geostatistics. Kansas Geol Surv Open File Rep 26:50

    Google Scholar 

  • Brunner P, Doherty J, Simmons CT (2012) Uncertainty assessment and implications for data acquisition in support of integrated hydrologic models. Water Resour Res 48:W07513

  • Cressie N (1993) Statistics for spatial data. Wiley Interscience, Hoboken, NJ

  • Deutsch C, Journel A (1998) GSLIB: geostatistical software library and user’s guide, 2nd edn. Oxford University Press, Oxford, UK

  • Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of field water use and crop yield. Wiley, Hoboken, NJ

    Google Scholar 

  • Fereshtehpour M, Karamouz M (2018) DEM resolution effects on coastal flood vulnerability assessment: deterministic and probabilistic approach. Water Resour Res 54(7):4965–4982

    Article  Google Scholar 

  • Goovaerts P (1999) Impact of the simulation algorithm, magnitude of ergodic fluctuations and number of realizations on the spaces of uncertainty of flow properties. Stoch Env Res Risk A 13(3):161–182

    Article  Google Scholar 

  • Guber AK, Gish TJ, Pachepsky YA, van Genuchten MT, Daughtry CST, Nicholson TJ, Cady RE (2008) Temporal stability in soil-water content patterns across agricultural fields. Catena 73(1):125–133

    Article  Google Scholar 

  • Haas TC (1990) Kriging and automated variogram modeling within a moving window. Atmos Environ Part A 24(7):1759–1769

    Article  Google Scholar 

  • Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, New York

  • Higham DJ, Higham NJ (2016) MATLAB guide. Society for Industrial and Applied Mathematics, Philadelphia

  • Hohenbrink TL, Lischeid G (2014) Texture-depending performance of an in situ method assessing deep seepage. J Hydrol 511:61–71

    Article  Google Scholar 

  • Hu W, Wang YQ, Li HJ, Huang MB, Hou MT, Li Z, She DL, Si BC (2019) Dominant role of climate in determining spatio-temporal distribution of potential groundwater recharge at a regional scale. J Hydrol 578:124042

    Article  Google Scholar 

  • Illston BG, Basara JB, Fiebrich CA, Crawford KC, Hunt E, Fisher DK, Elliott R, Humes K (2008) Mesoscale monitoring of soil moisture across a statewide network. J Atmos Ocean Technol 25(2):167–182

    Article  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108(3):389–411

    Article  Google Scholar 

  • Jamshidi R, Dragovich D, Webb AA (2014) Catchment scale geostatistical simulation and uncertainty of soil erodibility using sequential Gaussian simulation. Environ Earth Sci 71(12):4965–4976

    Article  Google Scholar 

  • Jury WA, Horton R (2004) Soil physics. Wiley, Chichester, UK

  • Kambale JB, Singh DK, Sarangi A (2017) Impact of climate change on groundwater recharge in a semi-arid region of northern India. Appl Ecol Environ Res 15(1):335–362

    Article  Google Scholar 

  • Karamouz M, Fereshtehpour M (2019) Modeling DEM errors in coastal flood inundation and damages: a spatial nonstationary approach. Water Resour Res 55(8):6606–6624

    Article  Google Scholar 

  • Karamouz M, Ahmadi A, Akhbari M (2020a) Groundwater hydrology: engineering, planning, and management, 2nd edn. CRC, Boca Raton, FL

  • Karamouz M, Mahmoodzadeh D, Essink GHO (2020b) A risk-based groundwater modeling framework in coastal aquifers: a case study on Long Island, New York, USA. Hydrogeol J 28(7):2519–2541

    Article  Google Scholar 

  • Karamouz M, Meidani H, Mahmoodzadeh D (2021a) A regional-scale non-stationarity based framework in unsaturated zone flow modeling. In: World Environmental and Water Resources Congress 2021, American Society of Civil Engineers, Reston, VA, PP 52–63

  • Karamouz M, Teymoori J, Olyaei MA (2021b) A spatial non-stationary based site selection of artificial groundwater recharge: a case study for semi-arid regions. Water Resour Manag 35(3):963–978

    Article  Google Scholar 

  • Kendy E, Gérard-Marchant P, Todd Walter M, Zhang Y, Liu C, Steenhuis TS (2003) A soil-water-balance approach to quantify groundwater recharge from irrigated cropland in the North China Plain. Hydrol Process 17(10):2011–2031

    Article  Google Scholar 

  • Korsunskaya LP, Gummatov NG, Pachepskiy YA (1995) Seasonal changes in root biomass, carbohydrate content, and structural characteristics of Gray Forest soil. Eurasian Soil Sci 27(9):45–52

    Google Scholar 

  • Lauffenburger ZH, Gurdak JJ, Hobza C, Woodward D, Wolf C (2018) Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA. Agric Water Manag 204:69–80

    Article  Google Scholar 

  • Lu X, Jin M, van Genuchten MT, Wang B (2011) Groundwater recharge at five representative sites in the Hebei Plain, China. Groundwater 49(2):286–294

    Article  Google Scholar 

  • Masarik KC, Norman JM, Brye KR (2014) Long-term drainage and nitrate leaching below well-drained continuous corn agroecosystems and a prairie. J Environ Protect 5(4):240–254

  • McPherson RA, Fiebrich CA, Crawford KC, Elliott RL, Kilby JR, Grimsley DL, Martinez JE, Basara JB, Illston BG, Morris DA, Kloesel KA, Stadler SJ, Melvin AD, Sutherland AJ, Shrivastava H, Carlson JD, Wolfinbarger JM, Bostic JP, Demko DB (2007) Statewide monitoring of the mesoscale environment: a technical update on the Oklahoma Mesonet. J Atmos Ocean Technol 24(3):301–321

    Article  Google Scholar 

  • Moeck C, Grech-Cumbo N, Podgorski J, Bretzler A, Gurdak JJ, Berg M, Schirmer M (2020) A global-scale dataset of direct natural groundwater recharge rates: a review of variables, processes and relationships. Sci Total Environ 717:137042

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Article  Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522

    Article  Google Scholar 

  • Mukherjee S, Garg RD, Mukherjee S (2011) Effect of systematic error on DEM and its derived attributes: a case study on Dehradun area using Cartosat-1 stereo data. Indian J Landscape System and Ecol Studies 34(1):45–58

    Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I: a discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Nasta P, Romano N (2016) Use of a flux-based field capacity criterion to identify effective hydraulic parameters of layered soil profiles subjected to synthetic drainage experiments. Water Resour Res 52(1):566–584

    Article  Google Scholar 

  • Naylor S, Letsinger SL, Ficklin DL, Ellett KM, Olyphant GA (2016) A hydropedological approach to quantifying groundwater recharge in various glacial settings of the mid-continental USA. Hydrol Process 30(10):1594–1608

    Article  Google Scholar 

  • Oklahoma Climatological Survey (2021) Climate of Oklahoma. http://climate.ok.gov/index.php/site/page/climate_of_oklahoma. Accessed October 2021

  • Oklahoma Water Resources Board (2012) Oklahoma comprehensive water plan. Executive report, Oklahoma Water Resources Board, Oklahoma City, OK

  • Oklahoma Water Resources Board (2020) Water facts. https://www.owrb.ok.gov/util/waterfact.php. Accessed October 2021

  • Pollacco JAP, Ugalde JMS, Angulo-Jaramillo R, Braud I, Saugier B (2008) A Linking Test to reduce the number of hydraulic parameters necessary to simulate groundwater recharge in unsaturated soils. Adv Water Resour 31(2):355–369

    Article  Google Scholar 

  • Pozdniakov SP, Vasilevsky PY, Grinevskiy SO, Lekhov VA, Sizov NE, Wang P (2020) Variability in spatial–temporal recharge under the observed and projected climate: a site-specific simulation in the black soil region of Russia. J Hydrol 590:125247

    Article  Google Scholar 

  • Rassam D, Šimůnek J, Mallants D, Van Genuchten MTh (2018) The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media: Tutorial. CSIRO Land and Water, Canberra, Australia

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1(5):318–333

    Article  Google Scholar 

  • Ries F, Lange J, Schmidt S, Puhlmann H, Sauter M (2015) Recharge estimation and soil moisture dynamics in a Mediterranean, semi-arid karst region. Hydrol Earth Syst Sci 19(3):1439–1456

    Article  Google Scholar 

  • Ritchie JT (1972) Model for predicting evaporation from a row crop with incomplete cover. Water Resour Res 8(5):1204–1213

    Article  Google Scholar 

  • Robertson GP (2008) GS+: Geostatistics for the environmental sciences. Gamma Design Software, Plainwell, MI

  • Sagar D, Cheng Q, Agterberg F (2018) Handbook of mathematical geosciences: fifty years of IAMG. Springer, Heidelberg, Germany

  • Schaap MG, Van Genuchten MT (2006) A modified Mualem–van Genuchten formulation for improved description of the hydraulic conductivity near saturation. Vadose Zone J 5(1):27–34

    Article  Google Scholar 

  • Schaap MG, Leij FJ, Van Genuchten MT (2001) Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251(3–4):163–176

    Article  Google Scholar 

  • Scott BL, Ochsner TE, Illston BG, Fiebrich CA, Basara JB, Sutherland AJ (2013) New soil property database improves Oklahoma Mesonet soil moisture estimates. J Atmos Ocean Technol 30(11):2585–2595

    Article  Google Scholar 

  • Shamsi E, Ziaei AN, Naghedifar SMR, Ansary H (2020) Groundwater recharge assessment of different irrigation scenarios by using unsaturated zone modeling (case study: Neishabour plain). Iranian J Soil Water Res 51(2):311–323

    Google Scholar 

  • Šimůnek J, Šejna M, Saito H, Sakai M, Van Genuchten MTh (2013) The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media (Version 4.17). Dept. of Environmental Sciences, Univ. of California, Riverside, CA

  • Tonkul S, Baba A, Şimşek C, Durukan S, Demirkesen AC, Tayfur G (2019) Groundwater recharge estimation using HYDRUS 1D model in Alaşehir sub-basin of Gediz Basin in Turkey. Environ Monit Assess 191(10):1–19

    Article  Google Scholar 

  • Turkeltaub T, Kurtzman D, Bel G, Dahan O (2015) Examination of groundwater recharge with a calibrated/validated flow model of the deep vadose zone. J Hydrol 522:618–627

    Article  Google Scholar 

  • Turkeltaub T, Jia X, Zhu Y, Shao MA, Binley A (2018) Recharge and nitrate transport through the deep vadose zone of the loess plateau: a regional-scale model investigation. Water Resour Res 54(7):4332–4346

    Article  Google Scholar 

  • US Department of Agriculture. (2017) Oklahoma land use. https://www.nrcs.usda.gov/Internet/NRCS_RCA/reports/nri_ok.html. Accessed October 2021

  • Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  • Wang G, Gertner G, Liu X, Anderson A (2001) Uncertainty assessment of soil erodibility factor for revised universal soil loss equation. Catena 46(1):1–14

    Article  Google Scholar 

  • Wang T, Zlotnik VA, Šimunek J, Schaap MG (2009) Using pedotransfer functions in vadose zone models for estimating groundwater recharge in semiarid regions. Water Resour Res 45:W04412

  • Wang T, Franz TE, Zlotnik VA (2015) Controls of soil hydraulic characteristics on modeling groundwater recharge under different climatic conditions. J Hydrol 521:470–481

    Article  Google Scholar 

  • Wang T, Franz TE, Yue W, Szilagyi J, Zlotnik VA, You J, Chen X, Shulski MD, Young A (2016) Feasibility analysis of using inverse modeling for estimating natural groundwater recharge from a large-scale soil moisture monitoring network. J Hydrol 533:250–265

    Article  Google Scholar 

  • Wechsler SP (2007) Uncertainties associated with digital elevation models for hydrologic applications: a review. Hydrol Earth Syst Sci 11(4):1481–1500

    Article  Google Scholar 

  • Wyatt BM, Ochsner TE, Fiebrich CA, Neel CR, Wallace DS (2017) Useful drainage estimates obtained from a large-scale soil moisture monitoring network by applying the unit-gradient assumption. Vadose Zone J 16(6):1–15

    Article  Google Scholar 

  • Wyatt BM, Ochsner TE, Brown WG, Diggins DC, Illston BG, Fiebrich C A (2021) MesoSoil v2.0: an updated soil physical property database for the Oklahoma Mesonet. Vadose Zone J 20(4):e20134

  • Zhang Y, Schaap MG, Guadagnini A, Neuman SP (2016) Inverse modeling of unsaturated flow using clusters of soil texture and pedotransfer functions. Water Resour Res 52(10):7631–7644

    Article  Google Scholar 

  • Zhang Y, Ochsner TE, Fiebrich CA, Illston BG (2019) Recalibration of sensors in one of the world’s longest running automated soil moisture monitoring networks. Soil Sci Soc Am J 83(4):1003–1011

    Article  Google Scholar 

Download references

Acknowledgements

Oklahoma Mesonet data are provided courtesy of the Oklahoma Mesonet, which is jointly operated by Oklahoma State University and the University of Oklahoma.

Funding

Continued funding for maintenance of the network is provided by the taxpayers of Oklahoma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Karamouz.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 888 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karamouz, M., Meidani, H. & Mahmoodzadeh, D. Inverse unsaturated-zone flow modeling for groundwater recharge estimation: a regional spatial nonstationary approach. Hydrogeol J 30, 1529–1549 (2022). https://doi.org/10.1007/s10040-022-02502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02502-8

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy