Skip to main content

Advertisement

Log in

Effect of Vegetation on the Energy Balance and Evapotranspiration in Tallgrass Prairie: A Paired Study Using the Eddy-Covariance Method

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We carried out a paired study in tallgrass prairie to evaluate the influence of vegetation on the energy exchange and evapotranspiration. Two eddy-covariance systems were installed over two adjoining sites, one of which was denuded of vegetation, with the adjacent, control site kept undisturbed. Our year-long investigation shows that, for quantifying the ground surface heat flux, the soil heat storage above the soil plates is more important than the sub-surface soil heat flux, both temporally and in magnitude. The incorporation of the soil heat storage, therefore, is indispensable for energy balance closure in areas with short vegetation. At our control site, we observed a critical threshold of 0.17 m3 m−3 in the surface (top 0.3 m) soil water content, whereby the energy partitioning is significantly affected by the presence of the photosynthetically active vegetation when the surface soil water content is higher than this critical threshold. The pattern of energy partitioning approaches that of the treated site when the surface soil water content is lower than this threshold (during drought), because of the suppression of plant physiological activities. This threshold also applies to the surface conductance for water vapour at the control site, where yearly evapotranspiration is 728 ± 3 mm (versus 547 ± 2 mm for the treated site). Thus, the soil water content and presence of active vegetation are the key determinants of energy partitioning and evapotranspiration. Any land-cover changes or vegetation-management practices that alter these two factors may change the energy and water budgets in tallgrass prairie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aires LM, Pio CA, Pereira JS (2008) The effect of drought on energy and water vapour exchange above a mediterranean C3/C4 grassland in Southern Portugal. Agric For Meteorol 148(4):565–579

    Article  Google Scholar 

  • Ammann C, Flechard CR, Leifeld J, Neftel A, Fuhrer J (2007) The carbon budget of newly established temperate grassland depends on management intensity. Agr Ecosyst Environ 121(1–2):5–20

    Article  Google Scholar 

  • Anderson RG, Wang D (2014) Energy budget closure observed in paired Eddy covariance towers with increased and continuous daily turbulence. Agric For Meteorol 184:204–209

    Article  Google Scholar 

  • Arnold KB (2010) Eddy covariance in a tallgrass prairie: energy balance closure, water and carbon budgets, and shrub expansion. Kansas State University, Kansas

    Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol 9(4):479–492

    Article  Google Scholar 

  • Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434

    Article  Google Scholar 

  • Baldocchi DD, Xu LK, Kiang N (2004) How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland. Agric For Meteorol 123(1–2):13–39

    Article  Google Scholar 

  • Boval M, Dixon RM (2012) The importance of grasslands for animal production and other functions: a review on management and methodological progress in the tropics. Animal 6(5):748–762

    Article  Google Scholar 

  • Bremer DJ, Ham JM (1999) Effect of spring burning on the surface energy balance in a tallgrass prairie. Agric For Meteorol 97(1):43–54

    Article  Google Scholar 

  • Brock FV, Crawford KC, Elliott RL, Cuperus GW, Stadler SJ, Johnson HL, Eilts MD (1995) The Oklahoma Mesonet—a technical overview. J Atmos OceanTechnol 12(1):5–19

    Google Scholar 

  • Burba G (2013) Eddy covariance method for scientific, industrial, agricultural and regulatory applications: a field book on measuring ecosystem gas exchange and areal emission rates. LI-Cor Biosciences

  • Burba GG, Verma SB (2005) Seasonal and interannual variability in evapotranspiration of native tallgrass prairie and cultivated wheat ecosystems. Agric For Meteorol 135(1–4):190–201

    Article  Google Scholar 

  • Campbell Scientific I (2016) Model HFP01 soil heat flux plate, instruction manual, pp 5–6

  • Cava D, Contini D, Donateo A, Martano P (2008) Analysis of short-term closure of the surface energy balance above short vegetation. Agric For Meteorol 148(1):82–93

    Article  Google Scholar 

  • Chen SP, Chen JQ, Lin GH, Zhang WL, Miao HX, Wei L, Huang JH, Han XG (2009) Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types. Agric For Meteorol 149(11):1800–1809

    Article  Google Scholar 

  • Conant S, Risser PG (1974) Canopy structure of a tall-grass prairie. J Range Manage 27(4):313–318

    Article  Google Scholar 

  • Eder F, De Roo F, Rotenberg E, Yakir D, Schmid HP, Mauder M (2015) Secondary circulations at a solitary forest surrounded by semi-arid shrubland and their impact on eddy-covariance measurements. Agric For Meteorol 211:115–127

    Article  Google Scholar 

  • Eichelmann E, Wagner-Riddle C, Warland J, Deen B, Voroney P (2016) Evapotranspiration, water use efficiency, and energy partitioning of a mature switchgrass stand. Agric For Meteorol 217:108–119

    Article  Google Scholar 

  • Fay PA, Kaufman DM, Nippert JB, Carlisle JD, Harper CW (2008) Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Global Change Biol 14(7):1600–1608

    Article  Google Scholar 

  • Fay PA, Blair JM, Smith MD, Nippert JB, Carlisle JD, Knapp AK (2011) Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences 8(10):3053–3068

    Article  Google Scholar 

  • Finkelstein PL, Sims PF (2001) Sampling error in eddy correlation flux measurements. J Geophys Res Atmos 106(D4):3503–3509

    Article  Google Scholar 

  • Fischer ML, Torn MS, Billesbach DP, Doyle G, Northup B, Biraud SC (2012) Carbon, water, and heat flux responses to experimental burning and drought in a tallgrass prairie. Agric For Meteorol 166:169–174

    Article  Google Scholar 

  • Foken T (1998) Die scheinbar ungeschlossene Energiebilanz am Erdboden-eine Herausforderung an die Experimentelle Meteorologie. Sitzungsberichte der Leibniz-Sozietät 24(5):131–150

    Google Scholar 

  • Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18(6):1351–1367

    Article  Google Scholar 

  • Foken T, Göockede M, Mauder M, Mahrt L, Amiro B, Munger W (2004) Post-field data quality control, handbook of micrometeorology. Springer, Berlin

    Google Scholar 

  • Foken T, Aubinet M, Finnigan JJ, Leclerc MY, Mauder M, Kyaw Tha Paw U (2011) Results of a panel discussion about the energy balance closure correction for trace gases. Bull Am Meteorol Soc 92(4):18

    Article  Google Scholar 

  • Frank JM, Massman WJ, Ewers BE (2013) Underestimates of sensible heat flux due to vertical velocity measurement errors in non-orthogonal sonic anemometers. Agric For Meteorol 171:72–81

    Article  Google Scholar 

  • Franssen HJH, Stockli R, Lehner I, Rotenberg E, Seneviratne SI (2010) Energy balance closure of eddy-covariance data: a multisite analysis for European FLUXNET stations. Agric For Meteorol 150(12):1553–1567

    Article  Google Scholar 

  • Gao ZM, Liu HP, Katul GG, Foken T (2017) Non-closure of the surface energy balance explained by phase difference between vertical velocity and scalars of large atmospheric eddies. Environ Res Lett 12(3):034025

    Article  Google Scholar 

  • Ge JJ, Zou C (2013) Impacts of woody plant encroachment on regional climate in the southern Great Plains of the United States. J Geophys Res Atmos 118(16):9093–9104

    Article  Google Scholar 

  • Ham JM, Knapp AK (1998) Fluxes of CO2, water vapor, and energy from a prairie ecosystem during the seasonal transition from carbon sink to carbon source. Agric For Meteorol 89(1):1–14

    Article  Google Scholar 

  • Hao YB, Wang YF, Huang XZ, Cui XY, Zhou XQ, Wang SP, Niu HS, Jiang GM (2007) Seasonal and interannual variation in water vapor and energy exchange over a typical steppe in Inner Mongolia, China. Agric For Meteorol 146(1–2):57–69

    Article  Google Scholar 

  • Heidbach K, Schmid HP, Mauder M (2017) Experimental evaluation of flux footprint models. Agric For Meteorol 246:142–153

    Article  Google Scholar 

  • Heusinkveld BG, Jacobs AFG, AaM H, Berkowicz SM (2004) Surface energy balance closure in an arid region: role of soil heat flux. Agric For Meteorol 122(1–2):21–37

    Article  Google Scholar 

  • Horst TW, Semmer SR, Maclean G (2015) Correction of a non-orthogonal, three-component sonic anemometer for flow distortion by transducer shadowing. Boundary-Layer Meteorol 155(3):371–395

    Article  Google Scholar 

  • Hunt JE, Kelliher FM, Mcseveny TM, Byers JN (2002) Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought. Agric For Meteorol 111(1):65–82

    Article  Google Scholar 

  • Jarvis PG, Mcnaughton KG (1986) Stomatal control of transpiration—scaling up from leaf to region. Adv Ecol Res 15:1–49

    Article  Google Scholar 

  • Katul GG, Oren R, Manzoni S, Higgins C, Parlange MB (2012) Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev Geophys. https://doi.org/10.1029/2011RG000366

    Google Scholar 

  • Kidston J, Brummer C, Black TA, Morgenstern K, Nesic Z, Mccaughey JH, Barr AG (2010) Energy balance closure using Eddy covariance above two different land surfaces and implications for CO2 flux measurements. Boundary-Layer Meteorol 136(2):193–218

    Article  Google Scholar 

  • Kim J, Verma SB (1990) Components of surface energy balance in a temperate grassland ecosystem. Boundary-Layer Meteorol 51(4):401–417

    Article  Google Scholar 

  • Kljun N, Calanca P, Rotach MW, Schmid HP (2004) A simple parameterisation for flux footprint predictions. Boundary-Layer Meteorol 112(3):503–523

    Article  Google Scholar 

  • Kljun N, Calanca P, Rotach MW, Schmid HP (2015) A simple two-dimensional parameterisation for flux footprint prediction (FFP). Geosci Model Dev. 8(11):3695–3713

    Article  Google Scholar 

  • Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. Science 291(5503):481–484

    Article  Google Scholar 

  • Kochendorfer J, Meyers TP, Frank J, Massman WJ, Heuer MW (2012) How well can we measure the vertical wind speed? Implications for fluxes of energy and mass. Boundary-Layer Meteorol 145(2):383–398

    Article  Google Scholar 

  • Kosugi Y, Takanashi S, Tanaka H, Ohkubo S, Tani M, Yano M, Katayama T (2007) Evapotranspiration over a Japanese cypress forest. I. Eddy covariance fluxes and surface conductance characteristics for 3 years. J Hydrol 337(3–4):269–283

    Article  Google Scholar 

  • Leuning R, Van Gorsel E, Massman WJ, Isaac PR (2012) Reflections on the surface energy imbalance problem. Agric For Meteorol 156:65–74

    Article  Google Scholar 

  • Li SG, Harazono Y, Oikawa T, Zhao HL, He ZY, Chang XL (2000) Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia. Agric For Meteorol 102(2–3):125–137

    Google Scholar 

  • Li Y, Liu SH, Wang S, Miao YC, Chen BC (2014) Comparative study on methods for computing soil heat storage and energy balance in arid and semi-arid areas. J Meteorol Res 28(2):308–322

    Article  Google Scholar 

  • Liang JN, Zhang L, Cao XJ, Wen J, Wang JM, Wang GY (2017) Energy balance in the semiarid area of the Loess Plateau, China. J Geophys Res Atmos 122(4):2155–2168

    Article  Google Scholar 

  • Liebethal C (2005) On the determination of the ground heat flux in micrometeorology and its influence on the energy balance closure. Doctoral dissertation

  • Limb RF, Engle DM, Alford AL, Hellgren EC (2010) Tallgrass prairie plant community dynamics along a canopy cover gradient of eastern redcedar (Juniperus virginiana L.). Rangel Ecol Manag 63(6):638–644

    Article  Google Scholar 

  • Liu XY, Yang SH, Xu JZ, Zhang JG, Liu JT (2017) Effects of soil heat storage and phase shift correction on energy balance closure of paddy fields. Atmosfera 30(1):39–52

    Article  Google Scholar 

  • Mahrt L (2010) Computing turbulent fluxes near the surface: needed improvements. Agric For Meteorol 150(4):501–509

    Article  Google Scholar 

  • Majozi NP, Mannaerts CM, Ramoelo A, Mathieu R, Nickless A, Verhoef W (2017) Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa. Hydrol Earth Syst Sci 21(7):3401–3415

    Article  Google Scholar 

  • Masseroni D, Corbari C, Mancini M (2014) Limitations and improvements of the energy balance closure with reference to experimental data measured over a maize field. Atmosfera 27(4):335–352

    Article  Google Scholar 

  • Mauder M, Foken T (2006) Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorol Z 15(6):597–609

    Article  Google Scholar 

  • Mckinley DC, Blair JM (2008) Woody plant encroachment by Juniperus virginiana in a mesic native grassland promotes rapid carbon and nitrogen accrual. Ecosystems 11(3):454–468

    Article  Google Scholar 

  • McPherson RA, Fiebrich CA, Crawford KC, Elliott RL, Kilby JR, Grimsley DL, Martinez JE, Basara JB, Illston BG, Morris DA, Kloesel KA, Stadler SJ, Melvin AD, Sutherland AJ, Shrivastava H, Carlson JD, Wolfinbarger JM, Bostic JP, Demko DB (2007) Statewide monitoring of the mesoscale environment: a technical update on the Oklahoma Mesonet. J Atmos Ocean Technol 24(3):301–321

    Article  Google Scholar 

  • Mengelkamp HT, Beyrich F, Heinemann G, Ament F, Bange J, Berger F, Bosenberg J, Foken T, Hennemuth B, Heret C, Huneke S, Johnsen KP, Kerschgens M, Kohsiek W, Leps JP, Liebethal C, Lohse H, Mauder M, Meijninger W, Raasch S, Simmer C, Spiess T, Tittebrand A, Uhlenbrock J, Zittel R (2006) Evaporation over a heterogeneous land surface—the EVA-GRIPS project. Bull Am Meteorol Soc 87(6):775–786

    Article  Google Scholar 

  • Mesonet (2016) Mesonet long-term averages—maps. https://www.mesonet.org/index.php/weather/mesonet_averages_maps#y=average&m=ann&p=rnet_sm&d=false

  • Meyers TP (2001) A comparison of summertime water and CO2 fluxes over rangeland for well watered and drought conditions. Agric For Meteorol 106(3):205–214

    Article  Google Scholar 

  • Meyers TP, Hollinger SE (2004) An assessment of storage terms in the surface energy balance of maize and soybean. Agric For Meteorol 125(1–2):105–115

    Article  Google Scholar 

  • Moncrieff JB, Massheder JM, De Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Soegaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188:589–611

    Article  Google Scholar 

  • Moncrieff J, Clement R, Finnigan J, Meyers T (2005) Averaging, detrending, and filtering of Eddy covariance time series. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Springer, Dordrecht

    Google Scholar 

  • Monteith J (1965) The state and movement of water in living organisms. In: Proceedings of evaporation and environment, XIXth Symposium 1965, pp 205–234

  • Monteith JL, Unsworth MH (2013) Principles of environmental physics: plants, animals, and the atmosphere. Elsevier, Amsterdam

    Google Scholar 

  • Moritz S, Sardá A, Bartz-Beielstein T, Zaefferer M, Stork J (2015) Comparison of different methods for univariate time series imputation in R. arXiv preprint arXiv:151003924

  • Nippert JB, Wieme RA, Ocheltree TW, Craine JM (2012) Root characteristics of C-4 grasses limit reliance on deep soil water in tallgrass prairie. Plant Soil 355(1–2):385–394

    Article  Google Scholar 

  • Novick KA, Oren R, Stoy PC, Siqueira MBS, Katul GG (2009) Nocturnal evapotranspiration in eddy-covariance records from three co-located ecosystems in the Southeastern US: implications for annual fluxes. Agric For Meteorol 149(9):1491–1504

    Article  Google Scholar 

  • Ochsner TE, Sauer TJ, Horton R (2007) Soil heat storage measurements in energy balance studies. Agron J 99(1):311–319

    Article  Google Scholar 

  • O’mara FP (2012) The role of grasslands in food security and climate change. Ann Bot 110(6):1263–1270

    Article  Google Scholar 

  • Oncley SP, Foken T, Vogt R, Kohsiek W, Debruin HAR, Bernhofer C, Christen A, Van Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L, Weidinger T (2007) The energy balance experiment EBEX-2000. Part I: overview and energy balance. Boundary-Layer Meteorol 123(1):1–28

    Article  Google Scholar 

  • Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006) Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3(4):571–583

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biol 11(9):1424–1439

    Article  Google Scholar 

  • Ricketts TH (1999) Terrestrial ecoregions of North America: a conservation assessment. Island Press, Washington, DC

    Google Scholar 

  • Russell ES, Liu HP, Gao ZM, Finn D, Lamb B (2015) Impacts of soil heat flux calculation methods on the surface energy balance closure. Agric For Meteorol 214:189–200

    Article  Google Scholar 

  • Ryu Y, Baldocchi DD, Ma S, Hehn T (2008) Interannual variability of evapotranspiration and energy exchange over an annual grassland in California. J Geophys Res Atmos. https://doi.org/10.1029/2007JD009263

    Google Scholar 

  • Samson FB, Knopf FL, Ostlie WR (2004) Great Plains ecosystems: past, present, and future. Wildl Soc Bull 32(1):6–15

    Article  Google Scholar 

  • Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70(5):1569–1578

    Article  Google Scholar 

  • Schulze ED, Kelliher FM, Korner C, Lloyd J, Leuning R (1994) Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition—a global ecology scaling exercise. Annu Rev Ecol Syst 25:629–662

    Article  Google Scholar 

  • Scott RL (2010) Using watershed water balance to evaluate the accuracy of eddy covariance evaporation measurements for three semiarid ecosystems. Agric For Meteorol 150(2):219–225

    Article  Google Scholar 

  • Scott RL, Huxman TE, Barron-Gafford GA, Jenerette GD, Young JM, Hamerlynck EP (2014) When vegetation change alters ecosystem water availability. Global Change Biol. 20(7):2198–2210

    Article  Google Scholar 

  • Skinner RH, Adler PR (2010) Carbon dioxide and water fluxes from switchgrass managed for bioenergy production. Agr Ecosyst Environ 138(3–4):257–264

    Article  Google Scholar 

  • Stoy PC, Mauder M, Foken T, Marcolla B, Boegh E, Ibrom A, Arain MA, Arneth A, Aurela M, Bernhofer C, Cescatti A, Dellwik E, Duce P, Gianelle D, Van Gorsel E, Kiely G, Knohl A, Margolis H, Mccaughey H, Merbold L, Montagnani L, Papale D, Reichstein M, Saunders M, Serrano-Ortiz P, Sottocornola M, Spano D, Vaccari F, Varlagin A (2013) A data-driven analysis of energy balance closure across FLUXNET research sites: the role of landscape scale heterogeneity. Agric For Meteorol 171:137–152

    Article  Google Scholar 

  • Sun G, Alstad K, Chen JQ, Chen SP, Ford CR, Lin GH, Liu CF, Lu N, Mcnulty SG, Miao HX, Noormets A, Vose JM, Wilske B, Zeppel M, Zhang Y, Zhang ZQ (2011) A general predictive model for estimating monthly ecosystem evapotranspiration. Ecohydrology 4(2):245–255

    Article  Google Scholar 

  • Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103(3):279–300

    Article  Google Scholar 

  • Tyrl RJ, Bidwell TG, Masters RE, Elmore RD, Weir JR (2007) Oklahoma’s native vegetation types, Oklahoma State University, Oklahoma Cooperative Extension Service, Stillwater, OK, USA, p. 8

  • Valayamkunnath P, Sridhar V, Zhao W, Allen RG (2018) Intercomparison of surface energy fluxes, soil moisture, and evapotranspiration from eddy covariance, large-aperture scintillometer, and modeling across three ecosystems in a semiarid climate. Agric For Meteorol 248:22–47

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14(3):512–526

    Article  Google Scholar 

  • Wagle P, Kakani VG (2014) Growing season variability in evapotranspiration, ecosystem water use efficiency, and energy partitioning in switchgrass. Ecohydrology 7(1):64–72

    Article  Google Scholar 

  • Wagle P, Kakani VG, Huhnke RL (2016) Evapotranspiration and ecosystem water use efficiency of switchgrass and high biomass sorghum. Agron J 108(3):1007–1019

    Article  Google Scholar 

  • Wang SS, Davidson A (2007) Impact of climate variations on surface albedo of a temperate grassland. Agric For Meteorol 142(2–4):133–142

    Article  Google Scholar 

  • Web Soil Survey (2003) United States Department of Agriculture. https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx. Cited 01/06/2017

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water-vapor transfer. Q J R Meteorol Soc 106(447):85–100

    Article  Google Scholar 

  • Wever LA, Flanagan LB, Carlson PJ (2002) Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agric For Meteorol 112(1):31–49

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99(1):127–150

    Article  Google Scholar 

  • Williams CA, Reichstein M, Buchmann N, Baldocchi D, Beer C, Schwalm C, Wohlfahrt G, Hasler N, Bernhofer C, Foken T, Papale D, Schymanski S, Schaefer K (2012) Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers. Water Resour Res. https://doi.org/10.1029/2011WR011586

    Google Scholar 

  • Wilson KB, Baldocchi DD (2000) Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agric For Meteorol 100(1):1–18

    Article  Google Scholar 

  • Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113(1–4):223–243

    Article  Google Scholar 

  • Wohlfahrt G, Klumpp K, Soussana J-F (2012) Eddy covariance measurements over grasslands, Eddy Covariance. Springer, Berlin

    Google Scholar 

  • Wutzler T, Lucas-Moffat A, Migliavacca M, Knauer J, Sickel K, Šigut L, Menzer O, Reichstein M (2018) Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosci Discuss 2018:1–39

    Article  Google Scholar 

  • Xu K, Metzger S, Desai AR (2017) Surface-atmosphere exchange in a box: space-time resolved storage and net vertical fluxes from tower-based eddy covariance. Agric For Meteorol 255:81–91

    Article  Google Scholar 

  • Yue P, Zhang Q, Niu SJ, Cheng H, Wang XY (2011) Effects of the soil heat flux estimates on surface energy balance closure over a semi-arid grassland. Acta Meteorol Sin 25(6):774–782

    Article  Google Scholar 

  • Zou CB, Turton D, Will RE, Fuhlendorf SD, Engle D, Hung J (2010) PS 62-146: estimating watershed level evapotranspiration using water budget method. In: The 95th ESA annual meeting 2010

  • Zou CB, Turton DJ, Will RE, Engle DM, Fuhlendorf SD (2014) Alteration of hydrological processes and streamflow with juniper (Juniperus virginiana) encroachment in a mesic grassland catchment. Hydrol Proc 28(26):6173–6182

    Article  Google Scholar 

  • Zuo J-Q, Wang J-M, Huang J-P, Li W, Wang G, Ren H (2011) Estimation of ground heat flux and its impact on the surface energy budget for a semi-arid grassland. Sci Cold Arid Reg 3:41–50

    Google Scholar 

Download references

Acknowledgements

We are grateful for the insightful comments from the two anonymous reviewers. This research was funded by the National Science Foundation’s Dynamics of Coupled Natural and Human Systems (CNH) program (DEB-1413900). Xiangmin Sun is a PhD student supported by the Sid Kyle Graduate Merit Assistantships in the Department of Ecosystem Science and Management at Texas A&M University. The authors would like to thank Chris Stansberry and Jay Prater for their excellent management of the research site. We also express our appreciation to Georgios Xenakis for his development of the FREddyPro package and for correspondence with the authors. The authors gratefully acknowledge many useful comments provided by James Heilman. We are deeply appreciative of the technical support provided by James Kathilankal, Jiahong Li, and George G. Burba from LI-COR Biosciences, Inc.; and by Sasha Ivans and Ben Conrad from Campbell Scientific, Inc. Finally, the authors are grateful to the many graduate students who helped with field trips, including Briana Wyatt, Patricia Torquato, Giovanne Serrau, Sumit Sharma, and Cynthia Wright.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangmin Sun.

Appendices

Appendix 1: Analytical Results

The following figures show further results on the prevailing wind direction, soil–water dynamics across the soil profile, the phase shifts between the two components of the ground surface heat flux heat flux G0, average monthly energy partitioning, and seasonal variations in the normalized sensible and latent heat fluxes (Figs. 11, 12, 13, 14, 15).

Fig. 11
figure 11

Wind rose maps for the two sites

Fig. 12
figure 12

Dynamics of volumetric soil moisture (θ) across the soil profiles at the two sites as measured at four depths—0.05, 0.20, 0.45, and 0.80 m—representing, respectively, the soil–water dynamics for the four depth intervals 0–0.1 m, 0.1–0.3 m, 0.3–0.6 m, and 0.6–1.0 m. Each point represents the daily mean value of θ from two measuring stations within each site. Dashed lines indicate the dates of the herbicide treatment

Fig. 13
figure 13

Diurnal variation of the ground surface heat flux (G0) and its two components (Ssoil and Gs) during the different seasons for each site: spring (21 March–20 June), summer (21 June–20 September), autumn (21 September–20 December), and winter (21 December–20 March). Each point is a 30-min ensemble mean for its corresponding flux during that entire season with a 95% confidence interval. Negative values represent the upwards diffusion of heat lost from the surface, and positive values represent the downwards absorption through the ground

Fig. 14
figure 14

Monthly means of all energy and turbulent fluxes (Rn, H, LE, and G0) for the two sites. The bars on each column represent the 95% confidence intervals

Fig. 15
figure 15

Variations in daily sensible (a) and latent heat (b) fluxes normalized by the available energy and Bowen ratios (c). Each point in the normalized value and Bowen ratio represents the daytime average when the global radiation is higher than 20 W m−2. All three series were smoothed by a locally weighted regression with a span of 0.1. The two vertical dashed lines represent the dates of herbicide application

Appendix 2: Code Availability

The sample R code for extracting the planetary boundary-layer height based on the geographical location from the North American Regional Reanalysis data is available as open source from the first author’s GitHub webpage at https://github.com/sunxm19/Planetary_boundary_height_for_FFP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zou, C.B., Wilcox, B. et al. Effect of Vegetation on the Energy Balance and Evapotranspiration in Tallgrass Prairie: A Paired Study Using the Eddy-Covariance Method. Boundary-Layer Meteorol 170, 127–160 (2019). https://doi.org/10.1007/s10546-018-0388-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-018-0388-9

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy