Skip to main content

Advertisement

Log in

Prioritization of sub-watersheds for soil erosion based on morphometric attributes using fuzzy AHP and compound factor in Jainti River basin, Jharkhand, Eastern India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Land degradation in the fringe extents of Chotanagpur plateau causes extensive harms to the land and agricultural productivity thereby human sustainability which magnets special provisions. So, this study intends to trace the erodibility nature in sub-basin scale to allocate the sub-watersheds that are very sensitive to soil erosion. Fourteen morphometric attributes which highly related to erosion processes is considered to prioritise the watersheds through the application of fuzzy inference-based analytical hierarchical process and compound factor (CF). A digital elevation model of 30 m spatial resolution along with Survey of India topographical maps and Google earth imagery are considered for extraction of basic, areal, landscape and shape morphometric attributes. Morphometric indices are converted into the unitless 8-bit data format (0–255), and priority weights are assigned to the specified range of control points in fuzzy AHP while consecutive ranks are assigned to indices based on their association with erosion process to get the CF values for each of watershed. The results of prioritisation through both approaches show a quite alike output that is both identifies sub-watershed 6 and 13 as very high erosion prone and CF classifies sub-watershed 4 and 8 as high erosion prone while fuzzy AHP recognises sub-watershed 4, 8, 5, 11, 14 under high-risk category. Therefore, both the results display good efficiency of morphometric indices in the assessment of erodibility priority in sub-basin scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdul Rahaman, S., Abdul Ajeez, S., Aruchamy, S., & Jegankumar, R. (2015). Prioritization of sub watersheds based on morphometric characteristics using fuzzy analytical hierarchy process and geographical information system: A study of Kallar Watershed, Tamil Nadu. Aquatic Procedia,4, 1322–1330. https://doi.org/10.1016/j.aqpro.2015.02.172.

    Article  Google Scholar 

  • Aher, P. D., Adinarayana, J., & Gorantiwar, S. D. (2014). Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach. Journal of Hydro-environment Research,511, 850–860.

    Google Scholar 

  • Ahmed, R., Sajjad, H., & Husain, I. (2017). Morphometric parameters-based prioritization of sub-watersheds using fuzzy analytical hierarchy process: A case study of lower Barpani Watershed, India. Natural Resources Research,27(1), 67–75. https://doi.org/10.1007/s11053-017-9337-4.

    Article  CAS  Google Scholar 

  • Alexakis, D. D., Hadjimitsis Diofantos, G., & Athos, A. (2013). Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of Yialias in Cyprus. Atmospheric Research,131, 108–124.

    Google Scholar 

  • Altaf, S., Meraj, G., & Ahmad Romshoo, S. (2014). Morphometry and land cover based multicriteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed. Environmental Monitoring and Assessment,186, 8391–8412.

    Google Scholar 

  • Ameri, A. A., Pourghasemi, H. R., & Cerda, A. (2018). Erodibility prioritization of sub-watersheds using morphometric parameters analysis and its mapping: A comparison among TOPSIS, VIKOR, SAW, and CF multi-criteria decision making models. Science of the Total Environment,613–614, 1385–1400. https://doi.org/10.1016/j.scitotenv.2017.09.210.

    Article  CAS  Google Scholar 

  • Balasubramanian, A., Duraisamy, K., Thirumalaisamy, S., Krishnaraj, S., & Yatheendradasan, R. K. (2017). Prioritization of subwatersheds based on quantitative morphometric analysis in lower Bhavani basin, Tamil Nadu, India using DEM and GIS techniques. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-017-3312-6.

    Article  Google Scholar 

  • Bera, A. (2017). Assessment of soil loss by universal soil loss equation (USLE) model using GIS techniques: A case study of Gumti River Basin, Tripura, India. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-017-0289-9.

    Article  Google Scholar 

  • Bharath, H. A., Vinay, S., Ramachandra, T.V., (2014). Landscape dynamics modelling through integrated Markov, Fuzzy-AHP and cellular automata. In The proceeding of international geoscience and remote sensing symposium (IEEE IGARSS 2014), July 13th–July 19th 2014, Quebec City convention centre, Quebec, Canada.

  • Biswas, H., Raizada, A., Mandal, D., Kumar, S., Srinivas, S., & Mishra, P. K. (2015). Identification of areas vulnerable to soil erosion risk in India using GIS methods. Solid Earth,6, 1247–1257.

    Google Scholar 

  • Biswas, S., Sudhakar, S., & Desai, V. R. (1999). Prioritization of sub-watersheds based on morphometric analysis of drainage basin: A remote sensing and GIS approach. Journal of the Indian Society of Remote Sensing,27, 155–166.

    Google Scholar 

  • Cevik, E., & Topal, T. (2003). GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology,44, 949–962.

    Google Scholar 

  • Chopra, R., Dhiman, R. D., & Sharma, P. K. (2005). Morphometric analysis of sub-watersheds in Gurdaspur district, Punjab using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 33(4), 531–539.

    Google Scholar 

  • Clarke, J. I. (1996). Morphometry from maps. Essays in geomorphology (pp. 235–274). New York: Elsevier publication. Co.

    Google Scholar 

  • Deepika, B., Avinash, K., & Jayappa, K. S. (2013). Integration of hydrological factors and demarcation of groundwater prospect zones: Insights from remote sensing and GIS techniques. Environmental Earth Sciences,70(3), 1319–1338. https://doi.org/10.1007/s12665-013-2218-1.

    Article  Google Scholar 

  • Deju, R. (1971). Regional hydrology fundamentals. New York: Gordon and Breach Science Publishers.

    Google Scholar 

  • Dubois, D., Esteva, F., Godo, L., & Prade, H. (2007). Fuzzy-set based logics: An history oriented presentation of their main developments. In D. M. Gabbay & J. Woods (Eds.), Handbook of the history of logic (pp. 325–449). London: Elsevier.

    Google Scholar 

  • Esper Angillieri, M. (2008). Morphometric analysis of Colanguil River Basin and flash flood hazard, San Juan. Argentina. Environmental Geology,55, 107–111.

    Google Scholar 

  • Faniran, A. (1968). The index of drainage intensity: A provisional new drainage factor. Australian Journal of Science,31, 328–330.

    Google Scholar 

  • Farhan, Y., & Anaba, O. (2016). A remote sensing and GIS approach for prioritization of Wadi Shueib Mini-Watersheds (Central Jordan) based on morphometric and Soil erosion susceptibility analysis. Journal of Geographic Information System,8, 1–19.

    Google Scholar 

  • Georgiou, D., Mohammed, E. S., & Rozakis, S. (2015). Multi-criteria decision making on the energy supply configuration of autonomous desalination units. Renewable Energy,75, 459–467.

    Google Scholar 

  • Ghosh, S., & Guchhait, S. K. (2016). Geomorphic threshold estimation for gully erosion in the lateritic soil of Birbhum, West Bengal, India. Soil Discussions. https://doi.org/10.5194/soil-2016-48.

    Article  Google Scholar 

  • Horton, R. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin,56, 275–370.

    Google Scholar 

  • Ifabiyi, I. P., & Eniolorunda, N. B. (2012). Watershed characteristics and their implication for hydrologic response in the upper Sokoto basin, Nigeria. Journal of Geography and Geology,4(2), 147.

    Google Scholar 

  • Jasmin, I., & Mallikarjuna, P. (2012). Morphometric analysis of Araniar river basin using remote sensing and geographical information system in the assessment of groundwater potential. Arabian Journal of Geosciences,6(10), 3683–3692. https://doi.org/10.1007/s12517-012-0627-1.

    Article  Google Scholar 

  • Jenks, G. F. (1989). Geographic logic in line generalization. Cartographica,26(1), 27–42.

    Google Scholar 

  • Kadam, A. K., Jaweed, T. H., Umrikar, B. N., Hussain, K., & Sankhua, R. N. (2017). Morphometric prioritization of semi-arid watershed for plant growth potential using GIS technique. Modeling Earth Systems and Environment,3(4), 1663–1673. https://doi.org/10.1007/s40808-017-0386-9.

    Article  Google Scholar 

  • Kanth, T., & Hassan, Z. (2012). Morphometric analysis and prioritization of watersheds for soil and water resources management in water catchment using geo-spatial tools. International Journal of Geology, Earth and Environmental Sciences,2, 30–41.

    Google Scholar 

  • Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., et al. (2016). The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil,2, 111–128. https://doi.org/10.5194/soil-2-111-2016.

    Article  Google Scholar 

  • Keshavarzi, A., & Heidari, A. (2010). Land suitability evaluation using Fuzzy continuous classification (a case study: Ziaran region). Modern Applied Science,4(7), 72–82.

    Google Scholar 

  • Khan, M. A., Gupta, V. P., & Moharana, P. C. (2001). Watershed prioritization using remote sensing and geographical information system: A case study from Guhiya, India. Journal of Arid Environments,49, 465–475.

    Google Scholar 

  • Kharat, M. G., Kamble, S. J., Raut, R. D., Kamble, S. S., & Dhume, S. M. (2016). Modeling landfill site selection using an integrated fuzzy MCDM approach. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-016-0106-x.

    Article  Google Scholar 

  • Kottagoda, S. D., & Abeysingha, N. S. (2017). Morphometric analysis of watersheds in Kelani river basin for soil and water conservation. Journal of the National Science Foundation of Sri Lanka,45(3), 6.

    Google Scholar 

  • Kouli, M., Soupios, P., & Vallianatos, F. (2009). Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environmental Geology,57(3), 483–497. https://doi.org/10.1007/s00254-008-1318-9.

    Article  Google Scholar 

  • Lykoudi, E., & Angelaki, M. (2004). Contribution to the morphometry parameters of an hydrographic network to the investigation of the neotechtonic activity: An application to the upper a Cheloos River. Bulletin of Greek Geological Society,36, 1084–1092.

    Google Scholar 

  • Magesh, N. S., Jitheshal, K. V., Chandrasekar, N., & Jini, K. V. (2013). Geographical information system based morphomteric analysis of Bharathapuzha River Basin, Kerala, India. Applied Water Science. https://doi.org/10.1007/s13201-013-0095-0.

    Article  Google Scholar 

  • Malik, M., Bhat, M., & Kuchay, N. A. (2011). Watershed based drainage morphometric analysis of Lidder catchment in Kashmir valley using Geographical Information System. The Recent Research in Science and Technology,3(4), 118–126.

    Google Scholar 

  • Masselink, R. J., Heckmann, T., Temme, A. J., Anders, N. S., Gooren, H., & Keesstra, S. D. (2017). A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes,31(1), 207–220.

    Google Scholar 

  • Mekonnen, M., Keesstra, S. D., Baartman, J. E., Stroosnijder, L., & Maroulis, J. (2017). Reducing sediment connectivity through man-made and natural sediment sinks in the Minizr Catchment, Northwest Ethiopia. Land Degradation and Development,28(2), 708–717.

    Google Scholar 

  • Meraj, G., Romshoo, S. A., Ayoub, S., & Altaf, S. (2017). Geoinformatics based approach for estimating the sediment yield of the mountainous watersheds in Kashmir Himalaya, India. Geocarto International,2, 1–25.

    Google Scholar 

  • Meraj, G., Romshoo, S. A., Yousuf, A. R., Altaf, S., & Altaf, F. (2015). Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya: Reply to comment by Shah 2015. Natural Hazards,78(1), 1–5.

    Google Scholar 

  • Mesa, L. M. (2006). Morphometric analysis of a subtropical Andean basin (Tucumam, Argentina). Environmental Geology,50(8), 1235–1242.

    Google Scholar 

  • Miller, V. C., (1953). A quantitative geomorphologic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee, Project NR 389042, Tech Report 3. Columbia University Department of Geology, ONR Geography Branch, New York.

  • Mol, G., & Keesstra, S. D. (2012). Soil science in a changing world. Current Opinions in Environmental Sustainability,4, 473–477.

    Google Scholar 

  • Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological and biological applications. Hydrological Processes,5(1), 3–30.

    Google Scholar 

  • Mulliner, E., Malys, N., & Maliene, V. (2016). Comparative analysis of MCDM methods for the assessment of sustainable housing affordability. Omega,59, 146–156.

    Google Scholar 

  • Nasre, R. A., Nagaraju, M. S. S., Srivastava, R., Maji, A. K., & Barthwal, A. K. (2013). Soil erosion mapping for land resources management in Karanji watershed of Yavatmal district, Maharashtra using remote sensing and GIS techniques. The Indian Journal of Soil Conservation,41(3), 248–256.

    Google Scholar 

  • Nooka Ratnam, K., Srivastava, Y. K., Venkateshwara Rao, V., Amminedu, E., & Murthy, K. S. R. (2005). Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis: Remote sensing and GIS perspecative. Journal of the Indian Society of Remote Sensing,33, 25–38.

    Google Scholar 

  • Okumura, M., & Araujo, A. G. (2014). Long-term cultural stability in hunter–gatherers: A case study using traditional and geometric morphometric analysis of lithic stemmed bifacial points from Southern Brazil. Journal of Archaeological Science,45, 59–71.

    Google Scholar 

  • Ouma, Y. O., & Tateishi, R. (2014). Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water,6(6), 1515–1545.

    Google Scholar 

  • Patel, D., Dholakia, M., Naresh, N., & Srivastava, P. (2012). Water harvesting structure positioning by using geo-visualization concept and prioritization of mini-watersheds through morphometric analysis in the lower Tapi Basin. Journal of the Indian Society of Remote Sensing,40, 299–312. https://doi.org/10.1007/s12524-011-0147-6.

    Article  Google Scholar 

  • Patel, D., Gajjar, C., & Srivastava, P. (2013). Prioritization of Malesari Mini-Watersheds through morphometric analysis: A remote sensing and GIS perspective. Environmental Earth Sciences,69, 2643–2656. https://doi.org/10.1007/s12665-012-2086-0.

    Article  Google Scholar 

  • Patel, D. P., & Srivastava, P. K. (2013). Flood hazards mitigation analysis using remote sensing and GIS: Correspondence with town planning scheme. Water Resources Management,27(7), 2353–2368. https://doi.org/10.1007/s11269-013-0291-6.

    Article  Google Scholar 

  • Phillips, J. D. (1990). Relative importance of factors influencing fluvial soil loss at the global scale. Science,290, 547–568.

    Google Scholar 

  • Pike, R. J. (2000). Geomorphometry: Diversity in quantitative surface analysis. Progress in Physical Geography,24, 1–20.

    Google Scholar 

  • Pradhan, B., & Pirasteh, P. (2010). Comparison between prediction capabilities of neural network and fuzzy logic techniques for landslide susceptibility mapping. Disaster Advances,3(2), 26–34.

    Google Scholar 

  • Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology,55, 467–475.

    Google Scholar 

  • Rai, P. K., Mishra, V. N., & Mohan, K. (2017). A study of morphometric evaluation of the Son basin, India using geospatial approach. Remote Sensing Applications: Society and Environment,7, 9–20. https://doi.org/10.1016/j.rsase.2017.05.001.

    Article  Google Scholar 

  • Rai, P. K., Mohan, K., Mishra, S., Ahmad, A., & Mishra, V. (2014). A GIS based approach in drainage morphometric analysis of Kanhar River basin, India. Applied Water Science. https://doi.org/10.1007/s13201-014-0238-y.

    Article  Google Scholar 

  • Richardson, C. P., & Amankwatia, K. (2018). GIS-based analytic hierarchy process approach to watershed vulnerability in Bernalillo County, New Mexico. Journal of Hydrologic Engineering,23(5), 04018010.

    Google Scholar 

  • Rodrigo-Comino, J., Iserloh, T., Lassu, T., Cerdà, A., Keestra, S. D., Prosdocimi, M., et al. (2016). Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards. Science of the Total Environment,565, 1165–1174. https://doi.org/10.1016/j.scitotenv.2016.05.163.

    Article  CAS  Google Scholar 

  • Rodrigo-Comino, J., Martínez-Hernández, C., Iserloh, T., & Cerdà, A. (2017). The contrasted impact of land abandonment on soil erosion in mediterranean agriculture fields. Pedosphere. https://doi.org/10.1016/S1002-0160(17)60441-7.

    Article  Google Scholar 

  • Rudraiah, M., Govindaiah, S., & Vittala, S. S. (2008). Morphometry using remote sensing and GIS techniques in the sub-basins of Kagna River basin, Gulburga District, Karnataka. Indian Society of Remote Sensing,36, 351–360.

    Google Scholar 

  • Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology,15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytical hierarchy process (p. 350). New York: McGraw Hill.

    Google Scholar 

  • Saaty, T. L., & Vargas, L. G. (2001). Models, methods, concepts, and applications of the analytic hierarchy process (1st ed., p. 333). Boston: Kluwer Academic.

    Google Scholar 

  • Saha, S. (2017). Groundwater potential mapping using analytical hierarchical process: A study on Md. Bazar Block of Birbhum District, West Bengal. Spatial. Information Research,25(4), 615–626. https://doi.org/10.1007/s41324-017-0127-1.

    Article  Google Scholar 

  • Schumm, S. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin,67, 597–646.

    Google Scholar 

  • Sharma, N. K., Singh, R. J., Mandal, D., Kumar, A., Alam, N. M., & Keesstra, S. (2017). Increasing farmer’s income and reducing soil erosion using intercropping in rainfed maizewheat rotation of Himalaya, India. Agriculture, Ecosystems and Environment,247, 43–53.

    Google Scholar 

  • Shit, P. K., Nandi, A. R., & Bhunia, G. S. (2015). Soil erosion risk mapping using RUSLE model on Jhargram sub-division at West Bengal in India. Model Earth Systems and Environment,1(28), 1–12.

    Google Scholar 

  • Singh, S., & Dubey, A. (1994). Geoenvironmental planning of watershed in India (pp. 28–69). Allahabad, India: Chugh Publications.

    Google Scholar 

  • Singh, N., & Singh, K. K. (2014). Geomorphological analysis and prioritization of sub-watersheds using Snyder’s synthetic unit hydrograph method. Applied Water Science,7(1), 275–283. https://doi.org/10.1007/s13201-014-0243-1.

    Article  Google Scholar 

  • Smith, G. H. (1935). The relative relief of Ohio. Geographical Review,25, 272–284.

    Google Scholar 

  • Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248(9), 655–668.

    Google Scholar 

  • Sreedevi, P. D., Owais, S., Khan, H. H., & Ahamed, S. (2009). Morphometric analysis of a watershed of South India using SRTM data and GIS. The Journal of the Geological Society of India,73(4), 543–552. https://doi.org/10.1007/s12594-009-0038-4.

    Article  Google Scholar 

  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Bulletin Geological Society of America,63, 1117.

    Google Scholar 

  • Strahler, A. (1957). Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union,38, 913–920.

    Google Scholar 

  • Strahler, A. (1964). Quantitative geomorphology of drainage basins and channel network. In V. Chow (Ed.), Handbook of applied hydrology (pp. 439–476). New York: McGraw-Hill.

    Google Scholar 

  • Sureh, M., Sudhakar, S., Tiwari, K. N., & Chowdary, V. M. (2004). Prioritization of watersheds using morphometric parameters and assessment of surface water potential using remote sensing. Journal of the Indian Society of Remote Sensing.,32, 249–259.

    Google Scholar 

  • Thomas, J., Joseph, S., Thrivikramji, K. P., Abe, G., & Kannan, N. (2012). Morphometrical analysis of two tropical mountain river basins of contrasting environmental settings, the southern Western Ghats, India. Environmental Earth Sciences,66(8), 2353–2366.

    Google Scholar 

  • Todorovski, L., & Džeroski, S. (2006). Integrating knowledge driven and data-driven approaches to modeling. Ecological Modelling,194(1), 3–13.

    Google Scholar 

  • Wijesundara, N. C., Abeysingha, N. S., & Dissanayake, D. M. S. L. B. (2018). GIS-based soil loss estimation using RUSLE model: A case of Kirindi Oya river basin, Sri Lanka. Modeling Earth Systems and Environment,4(1), 251–262. https://doi.org/10.1007/s40808-018-0419-z.

    Article  Google Scholar 

  • Youssef, A. M., Pradhan, B., & Hassan, A. M. (2011). Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environmental Earth Sciences,62(3), 611–623.

    Google Scholar 

Download references

Acknowledgements

The authors would like to express cordial thanks to our respected teachers of the Department of Geography, University of Gour Banga, who have always been mentally and infrastructurally supported ourselves. Authors would also like to thank the inhabitants of this basin because they helped a lot during our field visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hembram, T.K., Saha, S. Prioritization of sub-watersheds for soil erosion based on morphometric attributes using fuzzy AHP and compound factor in Jainti River basin, Jharkhand, Eastern India. Environ Dev Sustain 22, 1241–1268 (2020). https://doi.org/10.1007/s10668-018-0247-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-018-0247-3

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy