Skip to main content

Combining leaf fluorescence and active canopy reflectance sensing technologies to diagnose maize nitrogen status across growth stages

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Rapid methods allowing for non-destructive crop monitoring are imperative for accurate in-season nitrogen (N) status assessment and precision N management. The objectives of this paper were to (1) compare the performance of a leaf fluorescence sensor Dualex 4 and an active canopy reflectance sensor Crop Circle ACS-430 for estimating maize (Zea mays L.) N status indicators across growth stages; (2) evaluate the potential of N status prediction across growth stages using the reflectance parameters acquired from the canopy sensor at an early growth stage; and, (3) investigate the prospect of combining the active canopy sensor and leaf fluorescence sensor data to estimate N nutrition index (NNI) indirectly using a general model across growth stages. The results indicated that data from both sensors were closely related to NNI across stages. However, using the direct NNI estimation method, among the tested indices, only the N balance index (NBI) could diagnose N status satisfactorily, based on the Kappa statistics. The effect of growth stages on proximal sensing was reduced by incorporating the information of days after sowing. It was found that the leaf fluorescence sensor performed relatively better in estimating plant N concentration whereas the canopy reflectance sensor performed better in aboveground biomass estimation. Their combination significantly improved the reliability of N diagnosis, including NNI prediction. In addition, the study confirmed that N status can be assessed by predicting aboveground biomass at the later stages using the canopy reflectance measurements at an early stage. Furthermore, the integrated NBI was verified to be a more robust and sensitive N status indicator than the chlorophyll concentration index. It is concluded that combining active canopy sensor data, of an early growth stage (e.g. V8), with leaf fluorescence sensor data, modified using days after sowing, can improve the accuracy of corn N status diagnosis across growth stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abendroth, L. J., Elmore, R. W., Boyer, M. J., & Marley, S. K. (2011). Corn growth and development. Iowa State University Cooperative Extension Service.

    Google Scholar 

  • Agati, G., Foschi, L., Grossi, N., Guglielminetti, L., Cerovic, Z. G., & Volterrani, M. (2013). Fluorescence-based versus reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia matrella turfgrasses. European Journal of Agronomy, 45, 39–51.

    Article  CAS  Google Scholar 

  • Ata-Ul-Karim, S. T., Zhu, Y., Lu, X. J., Cao, Q., Tian, Y. C., & Cao, W. (2017). Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve. Field Crops Research, 201, 32–40.

    Article  Google Scholar 

  • Barnes, E., Clarke, T., Richards, S., Colaizzi, P., Haberland, J., Kostrzewski, M., et al. (2000). Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Proceedings of the 5th international conference on precision agriculture (ICPA 2000) (pp. 1–15). American Society of Agronomy.

    Google Scholar 

  • Berry, P., Blackburn, A., Sterling, M., Miao, Y., Hatley, D., Gullick, D., et al. (2019). A multi-disciplinary approach for the precision management of lodging risk. In J. V. Stafford (Ed.), Proceedings of the 12th European conference on precision agriculture (ECPA 2019) (pp. 969–975). Wageningen Academic Publishers.

    Google Scholar 

  • Berry, P. M., Baker, C. J., Hatley, D., Dong, R., Wang, X., Blackburn, G. A., et al. (2021). Development and application of a model for calculating the risk of stem and root lodging in maize. Field Crops Research, 262, 108037.

    Article  Google Scholar 

  • Blackmer, T. M., & Schepers, J. S. (1994). Techniques for monitoring crop nitrogen status in corn. Communications in Soil Science and Plant Analysis, 25(9 & 10), 1791–1800.

    Article  Google Scholar 

  • Broge, N. H., & Leblanc, E. (2000). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2), 156–172.

    Article  Google Scholar 

  • Cao, Q., Miao, Y., Wang, H., Huang, S., Cheng, S., Khosla, R., et al. (2013). Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops Research, 154, 133–144.

    Article  Google Scholar 

  • Cao, Q., Miao, Y., Feng, G., Gao, X., Li, F., Liu, B., et al. (2015). Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Computers and Electronics in Agriculture, 112(SI), 54–67.

    Article  Google Scholar 

  • Cerovic, Z. G., Masdoumier, G., Ghozlen, N. B., & Latouche, G. (2012). A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiologia Plantarum, 146, 251–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerovic, Z. G., Ghozlen, N. B., Milhade, C., Obert, M., Debuisson, S., & Moigne, M. L. (2015). Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on Dualex leaf-clip measurements in the field. Journal of Agricultural and Food Chemistry, 63(14), 3669–3680.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, S. C., & Barreto, H. J. (1997). Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agronomy Journal, 89(4), 557–562.

    Article  Google Scholar 

  • Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22(3), 229–242.

    Article  Google Scholar 

  • Chen, Z., Miao, Y., Lu, J., Zhou, L., Li, Y., Zhang, H., et al. (2019). In-season diagnosis of winter wheat nitrogen status in smallholder farmer fields across a village using unmanned aerial vehicle-based remote sensing. Agronomy, 9, 619. https://doi.org/10.3390/agronomy9100619

    Article  Google Scholar 

  • Cho, M. A., & Skidmore, A. K. (2006). A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sensing of Environment, 101(2), 181–193.

    Article  Google Scholar 

  • Cilia, C., Panigada, C., Rossini, M., Meroni, M., Busetto, L., Amaducci, S., et al. (2014). Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery. Remote Sensing, 6(7), 6549–6565.

    Article  Google Scholar 

  • Cummings, C., Miao, Y., Paiao, G. D., Kang, S., & Fernández, F. G. (2021a). Corn nitrogen status diagnosis with an innovative multi-parameter Crop Circle Phenom sensing system. Remote Sensing, 13, 401. https://doi.org/10.3390/rs13030401

    Article  Google Scholar 

  • Cummings, C., Miao, Y., Kang, S., & Stueve, K. (2021b). Developing a remote sensing and calibration strip-based in-season nitrogen management strategy for corn. In J. V. Stafford (Ed.), Precision agriculture’21, proceedings of the 13th European conference on precision agriculture (pp. 535–541). Wageningen Academic Publishers.

    Google Scholar 

  • Dash, J., & Curran, P. (2004). The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing, 25(23), 5403–5413.

    Article  Google Scholar 

  • Datt, B. (1999). Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. International Journal of Remote Sensing, 20(14), 2741–2759.

    Article  Google Scholar 

  • Daughtry, C. S. T., Walthall, C. L., Kim, M. S., de Colstoun, E. B., & McMurtrey, J. E., III. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229–239.

    Article  Google Scholar 

  • Dhillon, J., Aula, L., Eickhoff, E., & Raun, W. (2020). Predicting in-season maize (Zea mays L.) yield potential using crop sensors and climatological data. Scientific Reports, 10(1), 11479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, T., Shang, J., Chen, J. M., Liu, J., Qian, B., Ma, B., et al. (2019). Assessment of portable chlorophyll meters for measuring crop leaf chlorophyll concentration. Remote Sensing, 11, 2706. https://doi.org/10.3390/rs11222706

    Article  Google Scholar 

  • Dong, R., Miao, Y., Wang, X., Chen, Z., Yuan, F., Zhang, W., et al. (2020). Estimating plant nitrogen concentration of maize using a leaf fluorescence sensor across growth stages. Remote Sensing, 12(7), 1139.

    Article  Google Scholar 

  • Dong, R., Miao, Y., Wang, X., Chen, Z., & Yuan, F. (2021). Improving maize nitrogen nutrition index prediction using leaf fluorescence sensor combined with environmental and management variables. Field Crops Research, 269(2), 108180.

    Article  Google Scholar 

  • Eitel, J., Long, D., Gessler, P., & Smith, A. (2007). Using in-situ measurements to evaluate the new RapidEye™ satellite series for prediction of wheat nitrogen status. International Journal of Remote Sensing, 28(18), 4183–4190.

    Article  Google Scholar 

  • Gitelson, A. A. (2004). Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161(2), 165–173.

    Article  CAS  PubMed  Google Scholar 

  • Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289–298.

    Article  Google Scholar 

  • Gitelson, A. A., Viña, A., Ciganda, V., Rundquist, D. C., & Arkebauer, T. J. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32(8), L08403.

    Article  CAS  Google Scholar 

  • Gu, B., Ju, X., Wu, Y., Erisman, J. W., Bleeker, A., Reis, S., et al. (2018). Cleaning up nitrogen pollution may reduce future carbon sinks. Global Environmental Change-Human and Policy Dimensions, 48, 56–66.

    Article  Google Scholar 

  • Haboudane, D. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352.

    Article  Google Scholar 

  • Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2–3), 416–426.

    Article  Google Scholar 

  • Heege, H. J., Reusch, S., & Thiessen, E. (2008). Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany. Precision Agriculture, 9(3), 115–131.

    Article  Google Scholar 

  • Hu, D., Sun, Z., Li, T., Yan, H., & Zhang, H. (2014). Nitrogen nutrition index and its relationship with N use efficiency, tuber yield, radiation use efficiency, and leaf parameters in potatoes. Journal of Integrative Agriculture, 13(5), 1008–1016.

    Article  Google Scholar 

  • Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309.

    Article  Google Scholar 

  • Huang, S., Miao, Y., Zhao, G., Yuan, F., Ma, X., Tan, C., et al. (2015). Satellite remote sensing-based in-season diagnosis of rice nitrogen status in Northeast China. Remote Sensing, 7(8), 10646–10667.

    Article  Google Scholar 

  • Huang, S., Miao, Y., Yuan, F., Gnyp, M. L., Yao, Y., Cao, Q., et al. (2017). Potential of RapidEye and WorldView-2 Satellite data for improving rice nitrogen status monitoring at different growth stages. Remote Sensing, 9(3), 227.

    Article  Google Scholar 

  • Huang, S., Miao, Y., Yuan, F., Cao, Q., Ye, H., Lenz-Wiedemann, V. I., et al. (2019). In-season diagnosis of rice nitrogen status using proximal fluorescence canopy sensor at different growth stages. Remote Sensing, 11(16), 1847.

    Article  Google Scholar 

  • Jasper, J., Reusch, S., & Link, A. (2009). Active sensing of the N status of wheat using optimized wavelength combination–impact of seed rate, variety and growth stage. In E. J. van Henten, D. Goense, & C. Lokhorst (Eds.), Proceedings of the 7th European conference on precision agriculture (ECPA 2009) (pp. 23–30). Wageningen Academic Publishers.

    Google Scholar 

  • Jiang, J., Wang, C., Cao, Q., Tian, Y., Zhu, Y., Cao, W., et al. (2020). Using an active sensor to develop new critical nitrogen dilution curve for winter wheat. Sensors, 20(6), 1577.

    Article  CAS  PubMed Central  Google Scholar 

  • Jin, Z., Archontoulis, S. V., & Lobell, D. B. (2019). How much will precision nitrogen management pay off? An evaluation based on simulating thousands of corn fields over the US corn-belt. Field Crops Research, 240, 12–22.

    Article  Google Scholar 

  • Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50(4), 663–666.

    Article  Google Scholar 

  • Justes, E., Mary, B., Meynard, J. M., Machet, J. M., & Thelier-Huché, L. (1994). Determination of a critical nitrogen dilution curve for winter wheat crops. Annals of Botany, 74(4), 397–407.

    Article  CAS  Google Scholar 

  • Justice, C. O., Vermote, E., Townshend, J. R. G., Defries, R., Roy, D. P., Hall, D. K., et al. (1998). The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1228–1249.

    Article  Google Scholar 

  • Kyveryga, P. M., Blackmer, A. M., & Zhang, J. (2009). Characterizing and classifying variability in corn yield response to nitrogen fertilization on subfield and field scales. Agronomy Journal, 101(2), 269–277.

    Article  CAS  Google Scholar 

  • le Maire, G., Francois, C., & Dufrene, E. (2004). Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment, 89(1), 1–28.

    Article  Google Scholar 

  • Lemaire, G., Jeuffroy, M. H., & Gastal, F. (2008). Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. European Journal of Agronomy, 28(4), 614–624.

    Article  CAS  Google Scholar 

  • Li, W., He, P., & Jin, J. (2012). Critical nitrogen curve and nitrogen nutrition index for spring maize in North-East China. Journal of Plant Nutrition, 35(11), 1747–1761.

    Article  CAS  Google Scholar 

  • Li, J., Zhang, J., Zhao, Z., Lei, X., Xu, X., Weng, D., et al. (2013). Use of fluorescence-based sensors to determine the nitrogen status of paddy rice. Journal of Agricultural Science, 151(6), 862–887.

    Article  CAS  Google Scholar 

  • Li, F., Miao, Y., Feng, G., Yuan, F., Yue, S., Gao, X., et al. (2014). Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Research, 157, 111–123.

    Article  Google Scholar 

  • Longchamps, L., & Khosla, R. (2014). Early detection of nitrogen variability in corn using fluorescence. Agronomy Journal, 106(2), 511–518.

    Article  CAS  Google Scholar 

  • Lu, J., Miao, Y., Shi, W., Li, J., & Yuan, F. (2017). Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor. Scientific Reports, 7, 14073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meyer, S., Cerovic, Z. G., Goulas, Y., Montpied, P., Demotes-Mainard, S., Bidel, L. P., et al. (2006). Relationships between optically assessed polyphenols and chlorophyll contents, and leaf mass per area ratio in woody plants: A signature of the carbon-nitrogen balance within leaves? Plant Cell and Environment, 29(7), 1338–1348.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1973). Determination of total nitrogen in plant material. Agronomy Journal, 65(1), 109–112.

    Article  CAS  Google Scholar 

  • Overbeck, V., Schmitz, M., Tartachnyk, I., & Blanke, M. (2018). Identification of light availability in different sweet cherry orchards under cover by using non-destructive measurements with a Dualex™. European Journal of Agronomy, 93, 50–56.

    Article  Google Scholar 

  • Padilla, F. M., Peña-Fleitas, M. T., Gallardo, M., & Thompson, R. B. (2014). Evaluation of optical sensor measurements of canopy reflectance and of leaf flavonols and chlorophyll contents to assess crop nitrogen status of muskmelon. European Journal of Agronomy, 58, 39–52.

    Article  Google Scholar 

  • Padilla, F. M., Gallardo, M., Peña-Fleitas, M. T., de Souza, R., & Thompson, R. B. (2018). Proximal optical sensors for nitrogen management of vegetable crops: A review. Sensors, 18(7), 2083.

    Article  PubMed Central  CAS  Google Scholar 

  • Pinter, P. J., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daughtry, C. S. T., et al. (2003). Remote sensing for crop management. Photogrammetric Engineering & Remote Sensing, 69(6), 647–664.

    Article  Google Scholar 

  • Plénet, D., & Lemaire, G. (2000). Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant and Soil, 216(1–2), 65–82.

    Google Scholar 

  • Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126.

    Article  Google Scholar 

  • Reyniers, M., Walvoort, D. J., & De Baardemaaker, J. (2006). A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat. International Journal of Remote Sensing, 27(19), 4159–4179.

    Article  Google Scholar 

  • Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107.

    Article  Google Scholar 

  • Roujean, J., & Breon, F. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3), 375–384.

    Article  Google Scholar 

  • Rouse, J. W., Has, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the great plains with ERTS. Proceedings of the third ERTS symposium (pp. 309–317). NASA.

    Google Scholar 

  • Samborski, S. M., Tremblay, N., & Fallon, E. (2009). Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agronomy Journal, 101(4), 800–816.

    Article  CAS  Google Scholar 

  • Sandham, L., & Zietsman, H. L. (1997). Surface temperature measurement from space: A case study in the south western cape of south Africa. South African Journal of Enology and Viticulture, 18(2), 25–30.

    Google Scholar 

  • Solari, F., Shanahan, J., Ferguson, R., Schepers, J., & Gitelson, A. A. (2008). Active sensor reflectance measurements of corn nitrogen status and yield potential. Agronomy Journal, 100(3), 571–579.

    Article  CAS  Google Scholar 

  • Sripada, R. P., Heiniger, R. W., White, J. G., & Meijer, A. D. (2006). Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agronomy Journal, 98(4), 968–977.

    Article  Google Scholar 

  • Teal, R. K., Tubana, B., Girma, K., Freeman, K. W., Arnall, D. B., Walsh, O., et al. (2006). In-season prediction of corn grain yield potential using normalized difference vegetation index. Agronomy Journal, 98(6), 1488–1494.

    Article  Google Scholar 

  • Tremblay, N., Wang, Z., & Bélec, C. (2007). Evaluation of the Dualex for the assessment of corn nitrogen status. Journal of Plant Nutrition, 30(7–9), 1355–1369.

    Article  CAS  Google Scholar 

  • Tremblay, N., Wang, Z., & Bélec, C. (2009). Performance of Dualex in spring wheat for crop nitrogen status assessment, yield prediction and estimation of soil nitrate content. Journal of Plant Nutrition, 33(1), 57–70.

    Article  CAS  Google Scholar 

  • Tremblay, N., Fallon, E., & Ziadi, N. (2011). Sensing of crop nitrogen status: Opportunities, tools, limitations, and supporting information requirements. HortTechnology, 21(3), 274–281.

    Article  Google Scholar 

  • Tremblay, N., Wang, Z., & Cerovic, Z. G. (2012). Sensing crop nitrogen status with fluorescence indicators. A Review. Agronomy for Sustainable Development, 32(2), 451–464.

    Article  CAS  Google Scholar 

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150.

    Article  Google Scholar 

  • Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: The Kappa statistic. Family Medicine, 37(5), 360–363.

    PubMed  Google Scholar 

  • Víg, R., Huzsvai, L., Dobos, A., & Nagy, J. (2012). Systematic measurement methods for the determination of the SPAD values of maize (Zea mays L.) canopy and potato (Solanum tuberosum L.). Communications in Soil Science and Plant Analysis, 43(12), 1684–1693.

    Article  CAS  Google Scholar 

  • Wang, W., Yao, X., Yao, X., Tian, Y., Liu, X., Ni, J., et al. (2012). Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. Field Crops Research, 129, 90–98.

    Article  Google Scholar 

  • Wang, X., Miao, Y., Guan, Y., Xia, T., Lu, J., & Mulla, D. J. (2016). An evaluation of two active canopy sensor systems for non-destructive estimation of spring maize biomass. Proceedings of 5th international conference on agro-geoinformatics (agro-geoinformatics 2016) (pp. 1–6). IEEE.

    Google Scholar 

  • Wang, X., Miao, Y., Dong, R., Chen, Z., Guan, Y., Yue, X., et al. (2019). Developing active canopy sensor-based precision nitrogen management strategies for corn in Northeast China. Sustainability, 11(3), 706.

    Article  Google Scholar 

  • Wang, X., Miao, Y., Dong, R., Zha, H., Xia, T., Chen, Z., et al. (2021). Machine learning-based in-season nitrogen status diagnosis and side-dress nitrogen recommendation for corn. European Journal of Agronomy, 123, 126193.

    Article  CAS  Google Scholar 

  • Wu, W., Ma, B., Fan, J., Sun, M., Yi, Y., Guo, W., et al. (2019). Management of nitrogen fertilization to balance reducing lodging risk and increasing yield and protein content in spring wheat. Field Crops Research, 241, 107584.

    Article  Google Scholar 

  • Yuan, Z., Ata-Ul-Karim, S. T., Cao, Q., Lu, Z., Cao, W., Zhu, Y., et al. (2016). Indicators for diagnosing nitrogen status of rice based on chlorophyll meter readings. Field Crops Research, 185, 12–20.

    Article  Google Scholar 

  • Zarco-Tejada, P. J., Miller, J., Morales, A., Berjón, A., & Agüera, J. (2004). Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment, 90(4), 463–476.

    Article  Google Scholar 

  • Zha, H., Miao, Y., Wang, T., Li, Y., Zhang, J., Sun, W., et al. (2020). Improving unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction with machine learning. Remote Sensing, 12, 215. https://doi.org/10.3390/rs12020215

    Article  Google Scholar 

  • Zhang, Y., Tremblay, N., & Zhu, J. (2012). A first comparison of Multiplex® for the assessment of corn nitrogen status. Journal of Food Agriculture and Environment, 10(1), 1008–1016.

    CAS  Google Scholar 

  • Zhang, F., Chen, X., & Vitousek, P. (2013). An experiment for the world. Nature, 497(7447), 33–35.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, B., Ata-Ul-Karim, S. T., Liu, Z., Zhang, J., Xiao, J., Liu, Z., et al. (2018). Simple assessment of nitrogen nutrition index in summer maize by using chlorophyll meter readings. Frontiers in Plant Science, 9, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, H., Kang, S., Li, F., Du, T., Shukla, M. K., & Li, X. (2020). Nitrogen application modified the effect of deficit irrigation on tomato transpiration, and water use efficiency in different growth stages. Scientia Horticulturae, 263, 109112.

    Article  CAS  Google Scholar 

  • Ziadi, N., Brassard, M., Bélanger, G., Claessens, A., Tremblay, N., Cambouris, A. N., et al. (2008). Chlorophyll measurements and nitrogen nutrition index for the evaluation of corn nitrogen status. Agronomy Journal, 100(5), 1264–1273.

    Article  CAS  Google Scholar 

  • Ziadi, N., Bélanger, G., Claessens, A., Lefebvre, L., Cambouris, A. N., Tremblay, N., et al. (2010). Determination of a critical nitrogen dilution curve for spring wheat. Agronomy Journal, 102(1), 241–250.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Norwegian Ministry of Foreign Affairs (SINOGRAIN II, CHN-17/0019), the UK Biotechnology and Biological Sciences Research Council (BB/P004555/1), Minnesota Department of Agriculture/Agricultural Fertilizer Research and Education Council (MDA/AFREC R2020-32, R2021-32), the USDA National Institute of Food and Agriculture (State project 1016571).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Miao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, R., Miao, Y., Wang, X. et al. Combining leaf fluorescence and active canopy reflectance sensing technologies to diagnose maize nitrogen status across growth stages. Precision Agric 23, 939–960 (2022). https://doi.org/10.1007/s11119-021-09869-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-021-09869-w

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy