Abstract
Rapid methods allowing for non-destructive crop monitoring are imperative for accurate in-season nitrogen (N) status assessment and precision N management. The objectives of this paper were to (1) compare the performance of a leaf fluorescence sensor Dualex 4 and an active canopy reflectance sensor Crop Circle ACS-430 for estimating maize (Zea mays L.) N status indicators across growth stages; (2) evaluate the potential of N status prediction across growth stages using the reflectance parameters acquired from the canopy sensor at an early growth stage; and, (3) investigate the prospect of combining the active canopy sensor and leaf fluorescence sensor data to estimate N nutrition index (NNI) indirectly using a general model across growth stages. The results indicated that data from both sensors were closely related to NNI across stages. However, using the direct NNI estimation method, among the tested indices, only the N balance index (NBI) could diagnose N status satisfactorily, based on the Kappa statistics. The effect of growth stages on proximal sensing was reduced by incorporating the information of days after sowing. It was found that the leaf fluorescence sensor performed relatively better in estimating plant N concentration whereas the canopy reflectance sensor performed better in aboveground biomass estimation. Their combination significantly improved the reliability of N diagnosis, including NNI prediction. In addition, the study confirmed that N status can be assessed by predicting aboveground biomass at the later stages using the canopy reflectance measurements at an early stage. Furthermore, the integrated NBI was verified to be a more robust and sensitive N status indicator than the chlorophyll concentration index. It is concluded that combining active canopy sensor data, of an early growth stage (e.g. V8), with leaf fluorescence sensor data, modified using days after sowing, can improve the accuracy of corn N status diagnosis across growth stages.
Similar content being viewed by others
References
Abendroth, L. J., Elmore, R. W., Boyer, M. J., & Marley, S. K. (2011). Corn growth and development. Iowa State University Cooperative Extension Service.
Agati, G., Foschi, L., Grossi, N., Guglielminetti, L., Cerovic, Z. G., & Volterrani, M. (2013). Fluorescence-based versus reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia matrella turfgrasses. European Journal of Agronomy, 45, 39–51.
Ata-Ul-Karim, S. T., Zhu, Y., Lu, X. J., Cao, Q., Tian, Y. C., & Cao, W. (2017). Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve. Field Crops Research, 201, 32–40.
Barnes, E., Clarke, T., Richards, S., Colaizzi, P., Haberland, J., Kostrzewski, M., et al. (2000). Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Proceedings of the 5th international conference on precision agriculture (ICPA 2000) (pp. 1–15). American Society of Agronomy.
Berry, P., Blackburn, A., Sterling, M., Miao, Y., Hatley, D., Gullick, D., et al. (2019). A multi-disciplinary approach for the precision management of lodging risk. In J. V. Stafford (Ed.), Proceedings of the 12th European conference on precision agriculture (ECPA 2019) (pp. 969–975). Wageningen Academic Publishers.
Berry, P. M., Baker, C. J., Hatley, D., Dong, R., Wang, X., Blackburn, G. A., et al. (2021). Development and application of a model for calculating the risk of stem and root lodging in maize. Field Crops Research, 262, 108037.
Blackmer, T. M., & Schepers, J. S. (1994). Techniques for monitoring crop nitrogen status in corn. Communications in Soil Science and Plant Analysis, 25(9 & 10), 1791–1800.
Broge, N. H., & Leblanc, E. (2000). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2), 156–172.
Cao, Q., Miao, Y., Wang, H., Huang, S., Cheng, S., Khosla, R., et al. (2013). Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops Research, 154, 133–144.
Cao, Q., Miao, Y., Feng, G., Gao, X., Li, F., Liu, B., et al. (2015). Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Computers and Electronics in Agriculture, 112(SI), 54–67.
Cerovic, Z. G., Masdoumier, G., Ghozlen, N. B., & Latouche, G. (2012). A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiologia Plantarum, 146, 251–260.
Cerovic, Z. G., Ghozlen, N. B., Milhade, C., Obert, M., Debuisson, S., & Moigne, M. L. (2015). Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on Dualex leaf-clip measurements in the field. Journal of Agricultural and Food Chemistry, 63(14), 3669–3680.
Chapman, S. C., & Barreto, H. J. (1997). Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agronomy Journal, 89(4), 557–562.
Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22(3), 229–242.
Chen, Z., Miao, Y., Lu, J., Zhou, L., Li, Y., Zhang, H., et al. (2019). In-season diagnosis of winter wheat nitrogen status in smallholder farmer fields across a village using unmanned aerial vehicle-based remote sensing. Agronomy, 9, 619. https://doi.org/10.3390/agronomy9100619
Cho, M. A., & Skidmore, A. K. (2006). A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sensing of Environment, 101(2), 181–193.
Cilia, C., Panigada, C., Rossini, M., Meroni, M., Busetto, L., Amaducci, S., et al. (2014). Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery. Remote Sensing, 6(7), 6549–6565.
Cummings, C., Miao, Y., Paiao, G. D., Kang, S., & Fernández, F. G. (2021a). Corn nitrogen status diagnosis with an innovative multi-parameter Crop Circle Phenom sensing system. Remote Sensing, 13, 401. https://doi.org/10.3390/rs13030401
Cummings, C., Miao, Y., Kang, S., & Stueve, K. (2021b). Developing a remote sensing and calibration strip-based in-season nitrogen management strategy for corn. In J. V. Stafford (Ed.), Precision agriculture’21, proceedings of the 13th European conference on precision agriculture (pp. 535–541). Wageningen Academic Publishers.
Dash, J., & Curran, P. (2004). The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing, 25(23), 5403–5413.
Datt, B. (1999). Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. International Journal of Remote Sensing, 20(14), 2741–2759.
Daughtry, C. S. T., Walthall, C. L., Kim, M. S., de Colstoun, E. B., & McMurtrey, J. E., III. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229–239.
Dhillon, J., Aula, L., Eickhoff, E., & Raun, W. (2020). Predicting in-season maize (Zea mays L.) yield potential using crop sensors and climatological data. Scientific Reports, 10(1), 11479.
Dong, T., Shang, J., Chen, J. M., Liu, J., Qian, B., Ma, B., et al. (2019). Assessment of portable chlorophyll meters for measuring crop leaf chlorophyll concentration. Remote Sensing, 11, 2706. https://doi.org/10.3390/rs11222706
Dong, R., Miao, Y., Wang, X., Chen, Z., Yuan, F., Zhang, W., et al. (2020). Estimating plant nitrogen concentration of maize using a leaf fluorescence sensor across growth stages. Remote Sensing, 12(7), 1139.
Dong, R., Miao, Y., Wang, X., Chen, Z., & Yuan, F. (2021). Improving maize nitrogen nutrition index prediction using leaf fluorescence sensor combined with environmental and management variables. Field Crops Research, 269(2), 108180.
Eitel, J., Long, D., Gessler, P., & Smith, A. (2007). Using in-situ measurements to evaluate the new RapidEye™ satellite series for prediction of wheat nitrogen status. International Journal of Remote Sensing, 28(18), 4183–4190.
Gitelson, A. A. (2004). Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161(2), 165–173.
Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289–298.
Gitelson, A. A., Viña, A., Ciganda, V., Rundquist, D. C., & Arkebauer, T. J. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32(8), L08403.
Gu, B., Ju, X., Wu, Y., Erisman, J. W., Bleeker, A., Reis, S., et al. (2018). Cleaning up nitrogen pollution may reduce future carbon sinks. Global Environmental Change-Human and Policy Dimensions, 48, 56–66.
Haboudane, D. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352.
Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2–3), 416–426.
Heege, H. J., Reusch, S., & Thiessen, E. (2008). Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany. Precision Agriculture, 9(3), 115–131.
Hu, D., Sun, Z., Li, T., Yan, H., & Zhang, H. (2014). Nitrogen nutrition index and its relationship with N use efficiency, tuber yield, radiation use efficiency, and leaf parameters in potatoes. Journal of Integrative Agriculture, 13(5), 1008–1016.
Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309.
Huang, S., Miao, Y., Zhao, G., Yuan, F., Ma, X., Tan, C., et al. (2015). Satellite remote sensing-based in-season diagnosis of rice nitrogen status in Northeast China. Remote Sensing, 7(8), 10646–10667.
Huang, S., Miao, Y., Yuan, F., Gnyp, M. L., Yao, Y., Cao, Q., et al. (2017). Potential of RapidEye and WorldView-2 Satellite data for improving rice nitrogen status monitoring at different growth stages. Remote Sensing, 9(3), 227.
Huang, S., Miao, Y., Yuan, F., Cao, Q., Ye, H., Lenz-Wiedemann, V. I., et al. (2019). In-season diagnosis of rice nitrogen status using proximal fluorescence canopy sensor at different growth stages. Remote Sensing, 11(16), 1847.
Jasper, J., Reusch, S., & Link, A. (2009). Active sensing of the N status of wheat using optimized wavelength combination–impact of seed rate, variety and growth stage. In E. J. van Henten, D. Goense, & C. Lokhorst (Eds.), Proceedings of the 7th European conference on precision agriculture (ECPA 2009) (pp. 23–30). Wageningen Academic Publishers.
Jiang, J., Wang, C., Cao, Q., Tian, Y., Zhu, Y., Cao, W., et al. (2020). Using an active sensor to develop new critical nitrogen dilution curve for winter wheat. Sensors, 20(6), 1577.
Jin, Z., Archontoulis, S. V., & Lobell, D. B. (2019). How much will precision nitrogen management pay off? An evaluation based on simulating thousands of corn fields over the US corn-belt. Field Crops Research, 240, 12–22.
Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50(4), 663–666.
Justes, E., Mary, B., Meynard, J. M., Machet, J. M., & Thelier-Huché, L. (1994). Determination of a critical nitrogen dilution curve for winter wheat crops. Annals of Botany, 74(4), 397–407.
Justice, C. O., Vermote, E., Townshend, J. R. G., Defries, R., Roy, D. P., Hall, D. K., et al. (1998). The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1228–1249.
Kyveryga, P. M., Blackmer, A. M., & Zhang, J. (2009). Characterizing and classifying variability in corn yield response to nitrogen fertilization on subfield and field scales. Agronomy Journal, 101(2), 269–277.
le Maire, G., Francois, C., & Dufrene, E. (2004). Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment, 89(1), 1–28.
Lemaire, G., Jeuffroy, M. H., & Gastal, F. (2008). Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. European Journal of Agronomy, 28(4), 614–624.
Li, W., He, P., & Jin, J. (2012). Critical nitrogen curve and nitrogen nutrition index for spring maize in North-East China. Journal of Plant Nutrition, 35(11), 1747–1761.
Li, J., Zhang, J., Zhao, Z., Lei, X., Xu, X., Weng, D., et al. (2013). Use of fluorescence-based sensors to determine the nitrogen status of paddy rice. Journal of Agricultural Science, 151(6), 862–887.
Li, F., Miao, Y., Feng, G., Yuan, F., Yue, S., Gao, X., et al. (2014). Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Research, 157, 111–123.
Longchamps, L., & Khosla, R. (2014). Early detection of nitrogen variability in corn using fluorescence. Agronomy Journal, 106(2), 511–518.
Lu, J., Miao, Y., Shi, W., Li, J., & Yuan, F. (2017). Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor. Scientific Reports, 7, 14073.
Meyer, S., Cerovic, Z. G., Goulas, Y., Montpied, P., Demotes-Mainard, S., Bidel, L. P., et al. (2006). Relationships between optically assessed polyphenols and chlorophyll contents, and leaf mass per area ratio in woody plants: A signature of the carbon-nitrogen balance within leaves? Plant Cell and Environment, 29(7), 1338–1348.
Nelson, D. W., & Sommers, L. E. (1973). Determination of total nitrogen in plant material. Agronomy Journal, 65(1), 109–112.
Overbeck, V., Schmitz, M., Tartachnyk, I., & Blanke, M. (2018). Identification of light availability in different sweet cherry orchards under cover by using non-destructive measurements with a Dualex™. European Journal of Agronomy, 93, 50–56.
Padilla, F. M., Peña-Fleitas, M. T., Gallardo, M., & Thompson, R. B. (2014). Evaluation of optical sensor measurements of canopy reflectance and of leaf flavonols and chlorophyll contents to assess crop nitrogen status of muskmelon. European Journal of Agronomy, 58, 39–52.
Padilla, F. M., Gallardo, M., Peña-Fleitas, M. T., de Souza, R., & Thompson, R. B. (2018). Proximal optical sensors for nitrogen management of vegetable crops: A review. Sensors, 18(7), 2083.
Pinter, P. J., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daughtry, C. S. T., et al. (2003). Remote sensing for crop management. Photogrammetric Engineering & Remote Sensing, 69(6), 647–664.
Plénet, D., & Lemaire, G. (2000). Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant and Soil, 216(1–2), 65–82.
Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126.
Reyniers, M., Walvoort, D. J., & De Baardemaaker, J. (2006). A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat. International Journal of Remote Sensing, 27(19), 4159–4179.
Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107.
Roujean, J., & Breon, F. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3), 375–384.
Rouse, J. W., Has, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the great plains with ERTS. Proceedings of the third ERTS symposium (pp. 309–317). NASA.
Samborski, S. M., Tremblay, N., & Fallon, E. (2009). Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agronomy Journal, 101(4), 800–816.
Sandham, L., & Zietsman, H. L. (1997). Surface temperature measurement from space: A case study in the south western cape of south Africa. South African Journal of Enology and Viticulture, 18(2), 25–30.
Solari, F., Shanahan, J., Ferguson, R., Schepers, J., & Gitelson, A. A. (2008). Active sensor reflectance measurements of corn nitrogen status and yield potential. Agronomy Journal, 100(3), 571–579.
Sripada, R. P., Heiniger, R. W., White, J. G., & Meijer, A. D. (2006). Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agronomy Journal, 98(4), 968–977.
Teal, R. K., Tubana, B., Girma, K., Freeman, K. W., Arnall, D. B., Walsh, O., et al. (2006). In-season prediction of corn grain yield potential using normalized difference vegetation index. Agronomy Journal, 98(6), 1488–1494.
Tremblay, N., Wang, Z., & Bélec, C. (2007). Evaluation of the Dualex for the assessment of corn nitrogen status. Journal of Plant Nutrition, 30(7–9), 1355–1369.
Tremblay, N., Wang, Z., & Bélec, C. (2009). Performance of Dualex in spring wheat for crop nitrogen status assessment, yield prediction and estimation of soil nitrate content. Journal of Plant Nutrition, 33(1), 57–70.
Tremblay, N., Fallon, E., & Ziadi, N. (2011). Sensing of crop nitrogen status: Opportunities, tools, limitations, and supporting information requirements. HortTechnology, 21(3), 274–281.
Tremblay, N., Wang, Z., & Cerovic, Z. G. (2012). Sensing crop nitrogen status with fluorescence indicators. A Review. Agronomy for Sustainable Development, 32(2), 451–464.
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150.
Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: The Kappa statistic. Family Medicine, 37(5), 360–363.
Víg, R., Huzsvai, L., Dobos, A., & Nagy, J. (2012). Systematic measurement methods for the determination of the SPAD values of maize (Zea mays L.) canopy and potato (Solanum tuberosum L.). Communications in Soil Science and Plant Analysis, 43(12), 1684–1693.
Wang, W., Yao, X., Yao, X., Tian, Y., Liu, X., Ni, J., et al. (2012). Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. Field Crops Research, 129, 90–98.
Wang, X., Miao, Y., Guan, Y., Xia, T., Lu, J., & Mulla, D. J. (2016). An evaluation of two active canopy sensor systems for non-destructive estimation of spring maize biomass. Proceedings of 5th international conference on agro-geoinformatics (agro-geoinformatics 2016) (pp. 1–6). IEEE.
Wang, X., Miao, Y., Dong, R., Chen, Z., Guan, Y., Yue, X., et al. (2019). Developing active canopy sensor-based precision nitrogen management strategies for corn in Northeast China. Sustainability, 11(3), 706.
Wang, X., Miao, Y., Dong, R., Zha, H., Xia, T., Chen, Z., et al. (2021). Machine learning-based in-season nitrogen status diagnosis and side-dress nitrogen recommendation for corn. European Journal of Agronomy, 123, 126193.
Wu, W., Ma, B., Fan, J., Sun, M., Yi, Y., Guo, W., et al. (2019). Management of nitrogen fertilization to balance reducing lodging risk and increasing yield and protein content in spring wheat. Field Crops Research, 241, 107584.
Yuan, Z., Ata-Ul-Karim, S. T., Cao, Q., Lu, Z., Cao, W., Zhu, Y., et al. (2016). Indicators for diagnosing nitrogen status of rice based on chlorophyll meter readings. Field Crops Research, 185, 12–20.
Zarco-Tejada, P. J., Miller, J., Morales, A., Berjón, A., & Agüera, J. (2004). Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment, 90(4), 463–476.
Zha, H., Miao, Y., Wang, T., Li, Y., Zhang, J., Sun, W., et al. (2020). Improving unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction with machine learning. Remote Sensing, 12, 215. https://doi.org/10.3390/rs12020215
Zhang, Y., Tremblay, N., & Zhu, J. (2012). A first comparison of Multiplex® for the assessment of corn nitrogen status. Journal of Food Agriculture and Environment, 10(1), 1008–1016.
Zhang, F., Chen, X., & Vitousek, P. (2013). An experiment for the world. Nature, 497(7447), 33–35.
Zhao, B., Ata-Ul-Karim, S. T., Liu, Z., Zhang, J., Xiao, J., Liu, Z., et al. (2018). Simple assessment of nitrogen nutrition index in summer maize by using chlorophyll meter readings. Frontiers in Plant Science, 9, 11.
Zhou, H., Kang, S., Li, F., Du, T., Shukla, M. K., & Li, X. (2020). Nitrogen application modified the effect of deficit irrigation on tomato transpiration, and water use efficiency in different growth stages. Scientia Horticulturae, 263, 109112.
Ziadi, N., Brassard, M., Bélanger, G., Claessens, A., Tremblay, N., Cambouris, A. N., et al. (2008). Chlorophyll measurements and nitrogen nutrition index for the evaluation of corn nitrogen status. Agronomy Journal, 100(5), 1264–1273.
Ziadi, N., Bélanger, G., Claessens, A., Lefebvre, L., Cambouris, A. N., Tremblay, N., et al. (2010). Determination of a critical nitrogen dilution curve for spring wheat. Agronomy Journal, 102(1), 241–250.
Acknowledgements
This study was supported by the Norwegian Ministry of Foreign Affairs (SINOGRAIN II, CHN-17/0019), the UK Biotechnology and Biological Sciences Research Council (BB/P004555/1), Minnesota Department of Agriculture/Agricultural Fertilizer Research and Education Council (MDA/AFREC R2020-32, R2021-32), the USDA National Institute of Food and Agriculture (State project 1016571).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dong, R., Miao, Y., Wang, X. et al. Combining leaf fluorescence and active canopy reflectance sensing technologies to diagnose maize nitrogen status across growth stages. Precision Agric 23, 939–960 (2022). https://doi.org/10.1007/s11119-021-09869-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11119-021-09869-w