Skip to main content

Advertisement

Log in

Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

A fundamental component of the European natural disaster management policy is the detection of potential flood-prone areas, which is directly connected to the European Directive (2007/60). This study presents a framework for mapping potential flooding areas incorporating geographic information systems (GIS), fuzzy logic and clustering techniques, and multi-criteria evaluation methods. Factors are divided in different groups which do not have the same level of trade off. These groups are related to geophysical, morphological, climatological/meteorological and hydrological characteristics of the basin as well as to anthropogenic land use. GIS and numerical simulation are used for geographic data acquisition and processing. The selected factor maps are considered in order to estimate the spatial distribution of the potential flood prone areas. Using these maps, the study area is classified into five categories of flood vulnerable areas. The Multi-Criteria Analysis (MCA) techniques consist of the crisp and fuzzy analytical hierarchy processes (AHP) and are enhanced with different standardization methods. The classification is based on different clustering techniques and it is applied in two approaches. In the first approach, all criteria are normalized before the MCA process and then, the clustering techniques are applied to derive the final flood prone area maps. In the second approach, the criteria are clustered before and after the MCA process for the potential flood prone area mapping. The methodology is demonstrated in Xerias River watershed, Thessaly region, Greece. Xerias River floodplain was repeatedly flooded in the last few years. These floods had major impacts on agricultural areas, transportation networks and infrastructure. Historical flood inundation data has been used for the validation of the methodology. Results show that multiple MCA techniques should be taken into account in initial low-cost detection surveys of flood-prone areas and/or in preliminary analysis of flood hazard mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AghaKouchak A, Easterling D, Hsu K, Schubert S, Sorooshian S (eds) (2013) Extremes in a changing climate: Detection, analysis and uncertainty. water science and technology library, vol 65. Springer, Netherlands

    Google Scholar 

  • Alata M, Molhim M, Ramini A (2008) Optimizing of fuzzy C-means clustering algorithm using GA. World Acad Sci, Eng Technol, Int Sci 2(3):204–210

    Google Scholar 

  • Anane M, Bouziri L, Limam A, Jellali S (2012) Ranking suitable sites for irrigation with reclaimed water in the Nabeul-Hammamet region (Tunisia) using GIS and AHP-multicriteria decision analysis. Resour Conserv Recycl 65:36–46. doi:10.1016/j.resconrec.2012.05.006

    Article  Google Scholar 

  • Babaei H, Araghinejad S, Hoorfar A (2013) Developing a new method for spatial assessment of drought vulnerability (case study: Zayandeh-Rood river basin in Iran). Water Environ J 27(1):50–57. doi:10.1111/j.1747-6593.2012.00326.x

    Article  Google Scholar 

  • Bezdec JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York

    Book  Google Scholar 

  • Bishop MC (2007) Pattern recognition and machine learning. Springer

  • Boehner J, Koethe R, Conrad O, Gross J, Ringeler A, Selige T (2002) Soil regionalisation by means of terrain analysis and process parameterisation. In: Micheli E, Nachtergaele F, Montanarella L (eds) Soil classification 2001. European Soil Bureau, Luxembourg, pp 213–222, Research Report No. 7, EUR 20398 EN

    Google Scholar 

  • Boroushaki S, Malczewski J (2010) Using the fuzzy majority approach for GIS-based multicriteria group decision-making. Comput Geosci 36(3):302–312. doi:10.1016/j.cageo.2009.05.011

    Article  Google Scholar 

  • Buckley JJ (1985) Fuzzy hierarchical analysis. Fuzzy Sets Syst 17(3):233–247. doi:10.1016/0165-0114(85)90090-9

    Article  Google Scholar 

  • Bulut E, Duru O, Kececi T, Yoshida S (2012) Use of consistency index, expert prioritization and direct numerical inputs for generic fuzzy-AHP modeling: a process model for shipping asset management. Expert Syst Appl 39(2):1911–1923. doi:10.1016/j.eswa.2011.08.056

    Article  Google Scholar 

  • Chandio IA, Matori ANB, WanYusof KB, Talpur MAH, Balogun AL, Lawal DU (2013) GIS-based analytic hierarchy process as a multicriteria decision analysis instrument: a review. Arab J Geosci 6(8):3059–3066. doi:10.1007/s12517-012-0568-8

    Article  Google Scholar 

  • Chang DY (1996) Applications of the extent analysis method on fuzzy AHP. Eur J Oper Res 95(3):649–655. doi:10.1016/0377-2217(95)00300-2

    Article  Google Scholar 

  • Chang TH, Wang TC (2009) Using the fuzzy multicriteria decision making approach for measuring the possibility of successful knowledge management. Inf Sci 179(13):2294–2295. doi:10.1016/j.ins.2009.02.012

    Article  Google Scholar 

  • Chen YR, Yeh CH, Yu BF (2011) Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan. Nat Hazards 59(3):1261–1276. doi:10.1007/s11069-011-9831-7

    Article  Google Scholar 

  • Chowdary VM, Chakraborthy D, Jeyaram A, Murthy YVNK, Sharma JR, Dadhwal VK (2013) Multi-criteria decision making approach for watershed prioritization using analytic hierarchy process technique and GIS. Water Resour Manag 27(10):3555–357. doi:10.1007/s11269-013-0364-6

    Article  Google Scholar 

  • de Moel H, van Alphen J, Aerts JCJH (2009) Flood maps in Europe—methods, availability and use. Nat Hazards Earth Syst Sci 9(2):289–301. doi:10.5194/nhess-9-289-2009

    Article  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc Ser B Methodol 39(1):1–38

    Google Scholar 

  • Erensal YC, Öncan T, Demircan ML (2006) Determining key capabilities in technology management using fuzzy analytic hierarchy process: a case study of Turkey. Inf Sci 176(18):2755–2770. doi:10.1016/j.ins.2005.11.004

    Article  Google Scholar 

  • European Environment Agency (EEA) (2010) Mapping the impacts of natural hazards and technological accidents in Europe: An overview of the last decade. Office for Official Publications of the European Communities, Luxembourg, European Environment Agency (EEA), Report 13/2010

    Google Scholar 

  • Feizizadeh B, Blaschke T (2013) GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Nat Hazards 65(3):2105–2128. doi:10.1007/s11069-012-0463-3

    Article  Google Scholar 

  • Harats N, Ziv B, Yair Y, Kotroni V, Dayan U (2010) Lightning and rain dynamic indices as predictors for flash floods events in the Mediterranean. Adv Geosci 23:57–64. doi:10.5194/adgeo-23-57-2010

    Article  Google Scholar 

  • Huang PH, Tsai JS, Lin WT (2010) Using multiple-criteria decision-making techniques for eco-environmental vulnerability assessment: a case study on the Chi-Jia-Wan Stream watershed, Taiwan. Environ Monit Assess 168(1–4):141–158. doi:10.1007/s10661-009-1098-z

    Article  Google Scholar 

  • Jeefoo P, Tripathi NK (2011) Dengue risk zone index (DRZI) for mapping dengue risk areas. Int J Geoinformatics 7(1):53–62

    Google Scholar 

  • Jenks GF (1967) The data model concept in statistical mapping. Int Yearb Cartogr 7:186–190

    Google Scholar 

  • Kaufman L, Rousseeuw PJ (1986) Clustering large data sets (with discussion). In: Gelsema ES, Kanal LN (eds) Pattern recognition in practice II. North-Holland, Amsterdam, pp 425–437

    Chapter  Google Scholar 

  • Kaufman L, Rousseeuw PJ (1990) Finding groups in data: An introduction to cluster analysis. Wiley, New York

    Book  Google Scholar 

  • Kirkby MJ (1975) Hydrograph modelling strategies. In: Peel RF, Chisholm MD, Haggett P (eds) Progress in physical and human geography. Heinemann, London, pp 69–90

    Google Scholar 

  • Kourgialas NN, Karatzas GP (2011) Flood management and a GIS modelling method to assess flood-hazard areas - a case study. Hydrol Sci J - J Sci Hydrol 56(2):212–225. doi:10.1080/02626667.2011.555836

    Article  Google Scholar 

  • Lee CM (2010) The analytic hierarchy and the network process in multicriteria decision making: Performance evaluation and selecting key performance indicators based on ANP model. Convergence and hybrid information technologies, Marius C. (Ed.), ISBN: 978-953-307-068-1

  • Lee AHI, Chen WC, Chang CJ (2008) A fuzzy AHP and BSC approach for evaluating performance of IT department in the manufacturing industry in Taiwan. Expert Syst Appl 34(1):96–107. doi:10.1016/j.eswa.2006.08.022

    Article  Google Scholar 

  • Machiwal D, Jha MK, Mal BC (2011) Assessment of groundwater potential in a semi-arid region of india using remote sensing, GIS and MCDM techniques. Water Resour Manag 25(5):1359–1386. doi:10.1007/s11269-010-9749-y

    Article  Google Scholar 

  • Madhuri B, Aniruddha G, Rahul R (2013) Identification and classification of flood prone areas using AHP, GIS and GPS. Disaster Adv 6(11):120–131

    Google Scholar 

  • Malczewski J (2006) GIS-based multicriteria decision analysis: a survey of the literature. Int J Geogr Inf Sci 20(7):703–726. doi:10.1080/13658810600661508

    Article  Google Scholar 

  • Manfreda S, Di Leo M, Sole A (2011) Detection of flood-prone areas using digital elevation models, 2011. J Hydrol Eng 16(10):781–790. doi:10.1061/(ASCE)HE.1943-5584.0000367

    Article  Google Scholar 

  • MathWorks (2013) Statistics toolbox user’s guide. MATLAB

  • Meyer V, Scheuer S, Haase D (2009) A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany. Nat Hazards 48:17–39

    Article  Google Scholar 

  • Mikhailov L (2003) Deriving priorities from fuzzy pairwise comparison judgments. Fuzzy Sets Syst 134(3):365–385. doi:10.1016/S0165-0114(02)00383-4

    Article  Google Scholar 

  • Miliani F, Ravazzani G, Mancini M (2011) Adaptation of precipitation index for the estimation of antecedent moisture condition in large mountainous basins. J Hydrol Eng 16(3):218–227. doi:10.1061/(ASCE)HE.1943-5584.0000307

    Article  Google Scholar 

  • Morgan RPC (2005) Soil erosion and conservation. Blackwell Publishing Ltd, Oxford

    Google Scholar 

  • Negi P, Jain K (2008) Spatial multicriteria analysis for siting groundwater polluting industries. J Environ Inf 12(1):54–63. doi:10.3808/jci.200800124

    Article  Google Scholar 

  • Nock R, Nielsen F (2006) On weighting clustering. IEEE Trans Pattern Anal Mach Intell 28(8):1–13. doi:10.1109/TPAMI.2006.168

    Article  Google Scholar 

  • Noman NS, Nelson EJ, Zundel AK (2001) A review of automated flood plain delineation from digital terrain models. ASCE J Water Resour Plan Manag 127(6):394–402. doi:10.1061/(ASCE)0733-9496(2001)127:6(394)

    Article  Google Scholar 

  • Olaya V (2004) A gentle introduction to SAGA GIS, Revised by Javier Pineda and Victor Olaya, Edition 1.1

  • Pal I, Nath SK, Shukla K, Pal DK, Raj A, Thingbaijam KKS, Bansal BK (2008) Earthquake hazard zonation of Sikkim Himalaya using a GIS platform. Nat Hazards 45(3):333–377. doi:10.1007/s11069-007-9173-7

    Article  Google Scholar 

  • Papaioannou G, Loukas A, Vasiliades L, Aronica GT (2011) Flood prone areas mapping through GIS and multi-criteria analysis, EGU Leonardo Conference, Bratislava, Slovakia. Papaioannou G, Loukas A, Georgiadis Ch (2013) The effect of riverine terrain spatial resolution on flood modeling and mapping, Proc. SPIE 8795, First International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2013), 87951H; doi:10.1117/12.2028218

  • Park S, Choi C, Kim B, Kim J (2013) Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci 68(5):1443–1464. doi:10.1007/s12665-012-1842-5

    Article  Google Scholar 

  • Parker D, Tapsell S, McCarthy S (2007) Enhancing the human benefits of flood warnings. Nat Hazards 43(3):397–414. doi:10.1007/s11069-007-9137-y

    Article  Google Scholar 

  • Pawattana C, Tripathi NK (2008) Analytical hierarchical process (AHP) - based flood water retention planning in Thailand. GISci Remote Sens 45(3):343–355. doi:10.2747/1548-1603.45.3.343

    Article  Google Scholar 

  • Quinn P, Beven K, Chevallier P, Planchon O (1991) The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrolog Process 5(1):59–79. doi:10.1002/hyp.3360050106

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process: Planning, priority setting, resource allocation. McGraw-Hill, New York

    Google Scholar 

  • Saaty TL, Vargas LG (1991) Prediction, projection and forecasting. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Stefanidis S, Stathis D (2013) Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Nat Hazards 68:569–585. doi:10.1007/s11069-013-0639-5

    Article  Google Scholar 

  • Tagil S, Jenness J (2008) GIS-based automated classification and topographic, landcover and geologic attributes of landforms around the Yazoren Polje, Turkey. J Appl Sci 8(6):910–921. doi:10.3923/jas.2008.910.921

    Article  Google Scholar 

  • Tehrany SM, Pradhan B, Jebur NM (2013) Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol 504:69–79. doi:10.1016/j.jhydrol.2013.09.034

    Article  Google Scholar 

  • van Laarhoven PJM, Pedrycz W (1983) A fuzzy extention of Saaty’s priority theory. Fuzzy Sets Syst 11(1–3):229–241. doi:10.1016/S0165-0114(83)80082-7

    Google Scholar 

  • Yair Y, Lynn B, Price C, Kotroni V, Lagouvardos K, Morin E, Mugnai A, Llasat MD (2010) Predicting the potential for lightning activity in Mediterranean storms based on the weather research and forecasting (WRF) model dynamic and microphysical fields. J Geophys Res 115:D04205. doi:10.1029/2008JD010868

    Google Scholar 

  • Yalcin A, Bulut F (2007) Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey). Nat Hazards 41(1):201–226. doi:10.1007/s11069-006-9030-0

    Article  Google Scholar 

  • Yang Y, Huang S (2007) Image segmentation by fuzzy c-means clustering algorithm with a novel penalty term. Comput Inf 26(1):17–31

    Google Scholar 

  • Zhou X (2012) MATLAB - A fundamental tool for scientific computing and engineering applications - Volume 3. Edited by Vasilios N. Katsikis, InTech.

  • Zou Q, Zhou JZ, Zhou C, Song LX, Guo J (2013) Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP. Stoch Environ Res Risk Assess 27(2):525–546. doi:10.1007/s00477-012-0598-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Papaioannou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papaioannou, G., Vasiliades, L. & Loukas, A. Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping. Water Resour Manage 29, 399–418 (2015). https://doi.org/10.1007/s11269-014-0817-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-014-0817-6

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy