Skip to main content

Advertisement

Landslide Hazard Assessment Using Random SubSpace Fuzzy Rules Based Classifier Ensemble and Probability Analysis of Rainfall Data: A Case Study at Mu Cang Chai District, Yen Bai Province (Viet Nam)

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Landslide hazard assessment at the Mu Cang Chai district; Yen Bai province (Viet Nam) has been done using Random SubSpace fuzzy rules based Classifier Ensemble (RSSCE) method and probability analysis of rainfall data. RSSCE which is a novel classifier ensemble method has been applied to predict spatially landslide occurrences in the area. Prediction of temporally landslide occurrences in the present study has been done using rainfall data for the period 2008–2013. A total of fifteen landslide influencing factors namely slope, aspect, curvature, plan curvature, profile curvature, elevation, land use, lithology, rainfall, distance to faults, fault density, distance to roads, road density, distance to rivers, and river density have been utilized. The result of the analysis shows that RSSCE and probability analysis of rainfall data are promising methods for landslide hazard assessment. Finally, landslide hazard map has been generated by integrating spatial prediction and temporal probability analysis of landslides for the land use planning and landslide hazard management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides, 9(1), 93–106.

    Article  Google Scholar 

  • Aleotti, P. (2004). A warning system for rainfall-induced shallow failures. Engineering Geology, 73(3), 247–265.

    Article  Google Scholar 

  • Alkhasawneh, M., Ngah, U. K., Tay, L. T., Isa, N. A. M., & Al-Batah, M. S. (2014). Modeling and testing landslide hazard using decision tree. Journal of Applied Mathematics,. doi:10.1155/2014/929768.

    Google Scholar 

  • Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T. H., Norton, J. P., Perrin, C., Pierce, S. A., Robson, B., Seppelt, R., Voinov, A. A., Fath, B. D., Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling and Software, 40, 1–20.

    Article  Google Scholar 

  • Cevik, E., & Topal, T. (2003). GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology, 44(8), 949–962. doi:10.1007/s00254-003-0838-6.

    Article  Google Scholar 

  • Choi, J., Oh, H.-J., Lee, H.-J., Lee, C., & Lee, S. (2012). Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Engineering Geology, 124, 12–23. doi:10.1016/j.enggeo.2011.09.011.

    Article  Google Scholar 

  • Chung, C.-J. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3), 451–472.

    Article  Google Scholar 

  • Coe, J. A., Michael, J., Crovelli, R., & Savage, W. (2000). Preliminary map showing landslide densities, mean recurrence intervals, and exceedance probabilities as determined from historic records. Washington: Seattle.

    Google Scholar 

  • Cohen, W. W. (1995) Fast effective rule induction. In Proceedings of the twelfth international conference on machine learning (pp. 115–123).

  • Corominas, J., & Moya, J. (2008). A review of assessing landslide frequency for hazard zoning purposes. Engineering Geology, 102(3), 193–213.

    Article  Google Scholar 

  • Crovelli, R. A. (2000). Probability models for estimation of number and costs of landslides. U.S. Geological Survey Open File Report 00-249. (p. 23).

  • Dai, F., & Lee, C. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3), 213–228. doi:10.1016/S0169-555X(01)00087-3.

    Article  Google Scholar 

  • Gao, Y., & Wang, Y. (2006). Boosting in random subspace for face recognition. In Huang, D.-S., & Irwin, G. W. (Eds.), Intelligent computing in signal processing and pattern recognition (pp. 172–181). Berlin: Springer.

  • Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics, 98(3–4), 239–267.

    Article  Google Scholar 

  • Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The rainfall intensity–duration control of shallow landslides and debris flows: An update. Landslides, 5(1), 3–17.

    Article  Google Scholar 

  • Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72(1), 272–299.

    Article  Google Scholar 

  • Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844.

    Article  Google Scholar 

  • Hühn, J., & Hüllermeier, E. (2009). FURIA: An algorithm for unordered fuzzy rule induction. Data Mining and Knowledge Discovery, 19(3), 293–319. doi:10.1007/s10618-009-0131-8.

    Article  Google Scholar 

  • Kavzoglu, T., Sahin, E. K., & Colkesen, I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11(3), 425–439. doi:10.1007/s10346-013-0391-7.

    Article  Google Scholar 

  • Kjekstad, O., & Highland, L. (2009). Economic and social impacts of landslides. In Sassa, K., & Canuti, P. (Eds.), LandslidesDisaster risk reduction (pp. 573–587). Berlin: Springer.

  • Kleinberg, E. (1990). Stochastic discrimination. Annals of Mathematics and Artificial Intelligence, 1(1), 207–239.

    Article  Google Scholar 

  • Larsen, M. C., & Simon, A. (1993). A rainfall intensity–duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geografiska Annaler. Series A. Physical Geography, 75, 13–23.

    Article  Google Scholar 

  • NCEP. (2014). Global weather data for SWAT. http://globalweather.tamu.edu/home

  • Onan, A. (2015). Classifier and feature set ensembles for web page classification. Journal of Information Science,. doi:10.1177/0165551515591724.

    Google Scholar 

  • Pham, B. T., Tien Bui, D., Dholakia, M. B., Prakash, I., & Pham, H. V. (2016a). A comparative study of least square support vector machines and multiclass alternating decision trees for spatial prediction of rainfall-induced landslides in a tropical cyclones area. Geotechnical and Geological Engineering, 34(1), 1–18. doi:10.1007/s10706-016-9990-0.

    Article  Google Scholar 

  • Pham, B. T., Tien Bui, D., Pourghasemi, H. R., Indra, P., & Dholakia, M. B. (2015). Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: A comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theoretical and Applied Climatology, 122(3–4), 1–19. doi:10.1007/s00704-015-1702-9.

    Google Scholar 

  • Pham, B. T., Tien Bui, D., Prakash, I., & Dholakia, M. B. (2016b). Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS. Natural Hazards,. doi:10.1007/s11069-016-2304-2.

    Google Scholar 

  • Pourghasemi, H. R., Jirandeh, A. G., Pradhan, B., Xu, C., & Gokceoglu, C. (2013). Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science, 2, 349–369.

    Article  Google Scholar 

  • Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365. doi:10.1016/j.cageo.2012.08.023.

    Article  Google Scholar 

  • Saez, J. L., Corona, C., Stoffel, M., Schoeneich, P., & Berger, F. (2012). Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French Alps. Geomorphology, 138(1), 189–202.

    Article  Google Scholar 

  • Terlien, M. T., Van Westen, C. J., & van Asch, T. W. (1995). Deterministic modelling in GIS-based landslide hazard assessment. In Carrara, A., & Guzzetti, F. (Eds.), Geographical information systems in assessing natural hazards (pp. 57–77). Berlin: Springer.

  • Tien Bui, D., Pham, B. T., Nguyen, Q. P., & Hoang, N.-D. (2016). Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of Least-Squares Support Vector Machines and differential evolution optimization: A case study in Central Vietnam. International Journal of Digital Earth, 9(11), 1–21.

    Article  Google Scholar 

  • Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., & Dick, Ø. B. (2013). Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam. Natural Hazards, 66(2), 707–730.

    Article  Google Scholar 

  • Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.

    Book  Google Scholar 

  • Varnes, D. J. (1984). Landslide hazard zonation: A review of principles and practice. Paper presented at the UNESCO Press, Paris.

  • Zare, M., Pourghasemi, H. R., Vafakhah, M., & Pradhan, B. (2013). Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arabian Journal of Geosciences, 6(8), 2873–2888.

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to sincerely thank to the Vietnam Institute of Geosciences and Mineral Resources for sharing the data for the present study. Authors are also thankful to the Director, Bhaskarcharya Institute for Space Applications and Geo-Informatics (BISAG), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat, India for the encouragement and for providing facilities to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binh Thai Pham.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, B.T., Tien Bui, D., Pham, H.V. et al. Landslide Hazard Assessment Using Random SubSpace Fuzzy Rules Based Classifier Ensemble and Probability Analysis of Rainfall Data: A Case Study at Mu Cang Chai District, Yen Bai Province (Viet Nam). J Indian Soc Remote Sens 45, 673–683 (2017). https://doi.org/10.1007/s12524-016-0620-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-016-0620-3

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy