Abstract
Landslide hazard assessment at the Mu Cang Chai district; Yen Bai province (Viet Nam) has been done using Random SubSpace fuzzy rules based Classifier Ensemble (RSSCE) method and probability analysis of rainfall data. RSSCE which is a novel classifier ensemble method has been applied to predict spatially landslide occurrences in the area. Prediction of temporally landslide occurrences in the present study has been done using rainfall data for the period 2008–2013. A total of fifteen landslide influencing factors namely slope, aspect, curvature, plan curvature, profile curvature, elevation, land use, lithology, rainfall, distance to faults, fault density, distance to roads, road density, distance to rivers, and river density have been utilized. The result of the analysis shows that RSSCE and probability analysis of rainfall data are promising methods for landslide hazard assessment. Finally, landslide hazard map has been generated by integrating spatial prediction and temporal probability analysis of landslides for the land use planning and landslide hazard management.
Similar content being viewed by others
References
Akgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides, 9(1), 93–106.
Aleotti, P. (2004). A warning system for rainfall-induced shallow failures. Engineering Geology, 73(3), 247–265.
Alkhasawneh, M., Ngah, U. K., Tay, L. T., Isa, N. A. M., & Al-Batah, M. S. (2014). Modeling and testing landslide hazard using decision tree. Journal of Applied Mathematics,. doi:10.1155/2014/929768.
Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T. H., Norton, J. P., Perrin, C., Pierce, S. A., Robson, B., Seppelt, R., Voinov, A. A., Fath, B. D., Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling and Software, 40, 1–20.
Cevik, E., & Topal, T. (2003). GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology, 44(8), 949–962. doi:10.1007/s00254-003-0838-6.
Choi, J., Oh, H.-J., Lee, H.-J., Lee, C., & Lee, S. (2012). Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Engineering Geology, 124, 12–23. doi:10.1016/j.enggeo.2011.09.011.
Chung, C.-J. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3), 451–472.
Coe, J. A., Michael, J., Crovelli, R., & Savage, W. (2000). Preliminary map showing landslide densities, mean recurrence intervals, and exceedance probabilities as determined from historic records. Washington: Seattle.
Cohen, W. W. (1995) Fast effective rule induction. In Proceedings of the twelfth international conference on machine learning (pp. 115–123).
Corominas, J., & Moya, J. (2008). A review of assessing landslide frequency for hazard zoning purposes. Engineering Geology, 102(3), 193–213.
Crovelli, R. A. (2000). Probability models for estimation of number and costs of landslides. U.S. Geological Survey Open File Report 00-249. (p. 23).
Dai, F., & Lee, C. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3), 213–228. doi:10.1016/S0169-555X(01)00087-3.
Gao, Y., & Wang, Y. (2006). Boosting in random subspace for face recognition. In Huang, D.-S., & Irwin, G. W. (Eds.), Intelligent computing in signal processing and pattern recognition (pp. 172–181). Berlin: Springer.
Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics, 98(3–4), 239–267.
Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The rainfall intensity–duration control of shallow landslides and debris flows: An update. Landslides, 5(1), 3–17.
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72(1), 272–299.
Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844.
Hühn, J., & Hüllermeier, E. (2009). FURIA: An algorithm for unordered fuzzy rule induction. Data Mining and Knowledge Discovery, 19(3), 293–319. doi:10.1007/s10618-009-0131-8.
Kavzoglu, T., Sahin, E. K., & Colkesen, I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11(3), 425–439. doi:10.1007/s10346-013-0391-7.
Kjekstad, O., & Highland, L. (2009). Economic and social impacts of landslides. In Sassa, K., & Canuti, P. (Eds.), Landslides—Disaster risk reduction (pp. 573–587). Berlin: Springer.
Kleinberg, E. (1990). Stochastic discrimination. Annals of Mathematics and Artificial Intelligence, 1(1), 207–239.
Larsen, M. C., & Simon, A. (1993). A rainfall intensity–duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geografiska Annaler. Series A. Physical Geography, 75, 13–23.
NCEP. (2014). Global weather data for SWAT. http://globalweather.tamu.edu/home
Onan, A. (2015). Classifier and feature set ensembles for web page classification. Journal of Information Science,. doi:10.1177/0165551515591724.
Pham, B. T., Tien Bui, D., Dholakia, M. B., Prakash, I., & Pham, H. V. (2016a). A comparative study of least square support vector machines and multiclass alternating decision trees for spatial prediction of rainfall-induced landslides in a tropical cyclones area. Geotechnical and Geological Engineering, 34(1), 1–18. doi:10.1007/s10706-016-9990-0.
Pham, B. T., Tien Bui, D., Pourghasemi, H. R., Indra, P., & Dholakia, M. B. (2015). Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: A comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theoretical and Applied Climatology, 122(3–4), 1–19. doi:10.1007/s00704-015-1702-9.
Pham, B. T., Tien Bui, D., Prakash, I., & Dholakia, M. B. (2016b). Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS. Natural Hazards,. doi:10.1007/s11069-016-2304-2.
Pourghasemi, H. R., Jirandeh, A. G., Pradhan, B., Xu, C., & Gokceoglu, C. (2013). Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science, 2, 349–369.
Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365. doi:10.1016/j.cageo.2012.08.023.
Saez, J. L., Corona, C., Stoffel, M., Schoeneich, P., & Berger, F. (2012). Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French Alps. Geomorphology, 138(1), 189–202.
Terlien, M. T., Van Westen, C. J., & van Asch, T. W. (1995). Deterministic modelling in GIS-based landslide hazard assessment. In Carrara, A., & Guzzetti, F. (Eds.), Geographical information systems in assessing natural hazards (pp. 57–77). Berlin: Springer.
Tien Bui, D., Pham, B. T., Nguyen, Q. P., & Hoang, N.-D. (2016). Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of Least-Squares Support Vector Machines and differential evolution optimization: A case study in Central Vietnam. International Journal of Digital Earth, 9(11), 1–21.
Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., & Dick, Ø. B. (2013). Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam. Natural Hazards, 66(2), 707–730.
Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.
Varnes, D. J. (1984). Landslide hazard zonation: A review of principles and practice. Paper presented at the UNESCO Press, Paris.
Zare, M., Pourghasemi, H. R., Vafakhah, M., & Pradhan, B. (2013). Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arabian Journal of Geosciences, 6(8), 2873–2888.
Acknowledgments
Authors would like to sincerely thank to the Vietnam Institute of Geosciences and Mineral Resources for sharing the data for the present study. Authors are also thankful to the Director, Bhaskarcharya Institute for Space Applications and Geo-Informatics (BISAG), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat, India for the encouragement and for providing facilities to carry out this research work.
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Pham, B.T., Tien Bui, D., Pham, H.V. et al. Landslide Hazard Assessment Using Random SubSpace Fuzzy Rules Based Classifier Ensemble and Probability Analysis of Rainfall Data: A Case Study at Mu Cang Chai District, Yen Bai Province (Viet Nam). J Indian Soc Remote Sens 45, 673–683 (2017). https://doi.org/10.1007/s12524-016-0620-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12524-016-0620-3