Skip to main content

Advertisement

Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A new heuristic approach for minimizing possiblynonlinear and non-differentiable continuous spacefunctions is presented. By means of an extensivetestbed it is demonstrated that the new methodconverges faster and with more certainty than manyother acclaimed global optimization methods. The newmethod requires few control variables, is robust, easyto use, and lends itself very well to parallelcomputation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aluffi-Pentini, F., Parisi, V. and Zirilli, F. (1985), Global Optimization and Stochastic Differential Equations, Journal of Optimization Theory and Applications47(1), 1–16.

    Google Scholar 

  2. Brayton, H., Hachtel, G. and Sangiovanni-Vincentelli, A. (1981), A Survey of Optimization Techniques for Integrated Circuit Design, Proceedings of the IEEE69, pp. 1334–1362.

    Google Scholar 

  3. Bunday, B.D. and Garside G.R. (1987), Optimisation Methods in Pascal, Edward Arnold Publishers.

  4. Corana, A., Marchesi, M., Martini, C. and Ridella, S. (1987), Minimizing Multimodal Functions of Continuous Variables with the “Simulated Annealing Algorithm”, ACM Transactions on Mathematical Software, March 1987, pp. 272–280.

  5. Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization & Machine Learning, Addison-Wesley.

  6. Griewangk, A.O. (1981), Generalized Descent for Global Optimization, JOTA34, 11–39.

    Google Scholar 

  7. Ingber, L. and Rosen, B. (1992), Genetic Algorithms and Very Fast Simulated Reannealing: A Comparison, J. of Mathematical and Computer Modeling16(11), 87–100.

    Google Scholar 

  8. Ingber, L. (1993), Simulated Annealing: Practice Versus Theory, J. of Mathematical and Computer Modeling18(11), 29–57.

    Google Scholar 

  9. Lueder, E. (1990), Optimization of Circuits with a Large Number of Parameters, Archiv fuer Elektronik und Uebertragungstechnik44(2), 131–138.

    Google Scholar 

  10. Muehlenbein, H. and Schlierkamp-Vosen (1993), Predictive Models for the Breeder Genetic Algorithm, I. Continuous Parameter Optimizations, Evolutionary Computation1(1), 25–49.

    Google Scholar 

  11. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992), Numerical Recipes in C, Cambridge University Press.

  12. Price, K. (1994), Genetic Annealing, Dr. Dobb’s Journal, Oct. 1994, 127–132.

  13. Price, K. and Storn, R. (1996), Minimizing the Real Functions of the ICEC’96 contest by Differential Evolution, IEEE International Conference on Evolutionary Computation(ICEC’96), may 1996, pp. 842–844.

  14. Price, K. (1996), Differential Evolution: A Fast and Simple Numerical Optimizer, NAFIPS’96, pp. 524–527.

  15. Rabiner, L.R. and Gold, B. (1975), Theory and Applications of Digital Signal Processing, Prentice-Hall, Englewood Cliffs, N.J..

    Google Scholar 

  16. Rechenberg, I. (1973), Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart.

    Google Scholar 

  17. Schwefel, H.P. (1995), Evolution and Optimum Seeking, John Wiley.

  18. Storn, R. (1995), Constrained Optimization, Dr. Dobb’s Journal, May 1995, 119–123.

  19. Storn, R. (1996a), Differential Evolution Design of an IIR-Filter, IEEE International Conference on Evolutionary Computation(ICEC’96), May 1996, pp. 268–273.

  20. Storn, R. (1996b), On the Usage of Differential Evolution for Function Optimization, NAFIPS’96, pp. 519–523.

  21. Storn, R. (1996c), Design of an FIR-filter with Differential Evolution, private communication, 1996.

  22. Voigt, H.-M. (1995), Soft Genetic Operators in Evolutionary Computation, Evolution and Biocomputation, Lecture Notes in Computer Science 899, Springer, Berlin, pp. 123–141.

    Google Scholar 

  23. Zimmermann, W. (1990), Operations Research, Oldenbourg.

  24. Ziny, F., Optimization of routing control with Differential Evolution, private communication, 1995.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storn, R., Price, K. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008202821328

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy