Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data

Abstract

Much of a cell's activity is organized as a network of interacting modules: sets of genes coregulated to respond to different conditions. We present a probabilistic method for identifying regulatory modules from gene expression data. Our procedure identifies modules of coregulated genes, their regulators and the conditions under which regulation occurs, generating testable hypotheses in the form 'regulator X regulates module Y under conditions W'. We applied the method to a Saccharomyces cerevisiae expression data set, showing its ability to identify functionally coherent modules and their correct regulators. We present microarray experiments supporting three novel predictions, suggesting regulatory roles for previously uncharacterized proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the module networks algorithm and evaluation procedure.
Figure 2: Regulation programs represent context-specific and combinatorial regulation.
Figure 3: The respiration and carbon regulation module (55 genes).
Figure 4: Enrichment of annotations and motif binding sites in modules and in predicted targets of regulators.
Figure 5: Global view and higher order organization of modules.
Figure 6: Microarray experiments testing functional predictions for putative regulators.
Figure 7: Regulatory components allowing inference of regulation from expression data.

Similar content being viewed by others

References

  1. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    Article  CAS  Google Scholar 

  2. Spellman, P.T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

    Article  CAS  Google Scholar 

  3. Gasch, A.P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).

    Article  CAS  Google Scholar 

  4. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  5. Wu, L.F. et al. Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nat. Genet. 31, 255–265 (2002).

    Article  CAS  Google Scholar 

  6. Ihmels, J. et al. Revealing modular organization in the yeast transcriptional network. Nat. Genet. 31, 370–377 (2002).

    Article  CAS  Google Scholar 

  7. Halfon, M.S., Grad, Y., Church, G.M. & Michelson, A.M. Computation-based discovery of related transcriptional regulatory modules and motifs using an experimentally validated combinatorial model. Genome Res. 12, 1019–1028 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tanay, A., Sharan, R. & Shamir, R. Discovering statistically significant biclusters in gene expression data. Bioinformatics 18 Suppl 1, S136–S144 (2002).

    Article  Google Scholar 

  9. Roth, F.P., Hughes, J.D., Estep, P.W. & Church, G.M. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat. Biotechnol. 16, 939–945 (1998).

    Article  CAS  Google Scholar 

  10. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J. & Church, G.M. Systematic determination of genetic network architecture. Nat. Genet. 22, 281–285 (1999).

    Article  CAS  Google Scholar 

  11. Pilpel, Y., Sudarsanam, P. & Church, G.M. Identifying regulatory networks by combinatorial analysis of promoter elements. Nat. Genet. 29, 153–159 (2001).

    Article  CAS  Google Scholar 

  12. Segal, E., Barash Y., Simon I., Friedman N. & Koller D. From Promoter Sequence to Expression: A Probabilistic Framework. in Proceedings of the 6th International Conference on Research in Computational Molecular Biology (RECOMB) 263–272 (Washington, DC, 2002).

    Google Scholar 

  13. Pearl, J. Probabilistic Reasoning in Intelligent Systems (Morgan Kaufmann, Palo Alto, 1988).

    Google Scholar 

  14. Dhaseleer, P., Liang, S. & Somogoyi, R. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16, 707–726 (2000).

    Article  Google Scholar 

  15. Pe'er, D., Regev, A., Elidan, G. & Friedman, N. Inferring subnetworks from perturbed expression profiles. Bioinformatics 17 Suppl 1, S215–S224 (2001).

    Article  Google Scholar 

  16. Hartemink, A.J., Gifford, D.K., Jaakkola, T.S. & Young, R.A. Combining Location and Expression Data for Principled Discovery of Genetic Regulatory Networks. in Pacific Symposium on Biocomputing (Kauai, 2002).

    Google Scholar 

  17. Tanay, A. & Shamir, R. Computational expansion of genetic networks. Bioinformatics 17 Suppl 1, S270–S278 (2001).

    Article  Google Scholar 

  18. Pe'er, D., Regev, A. & Tanay, A. Minreg: inferring an active regulator set. Bioinformatics 18 Suppl 1, S258–S267 (2002).

    Article  Google Scholar 

  19. Forsburg, S.L. & Guarente, L. Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev. 3, 1166–1178 (1989).

    Article  CAS  Google Scholar 

  20. Norbeck, J. & Blomberg, A. The level of cAMP-dependent protein kinase A activity strongly affects osmotolerance and osmo-instigated gene expression changes in Saccharomyces cerevisiae. Yeast 16, 121–137 (2000).

    Article  CAS  Google Scholar 

  21. Lenssen, E., Oberholzer, U., Labarre, J., De Virgilio, C. & Collart, M.A. Saccharomyces cerevisiae Ccr4-not complex contributes to the control of Msn2p-dependent transcription by the Ras/cAMP pathway. Mol. Microbiol. 43, 1023–1037 (2002).

    Article  CAS  Google Scholar 

  22. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  Google Scholar 

  23. Shen-Orr, S.S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002).

    Article  CAS  Google Scholar 

  24. Lee, T.I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    Article  CAS  Google Scholar 

  25. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    Article  CAS  Google Scholar 

  26. Hlavacek, W.S. & Savageau, M.A. Rules for coupled expression of regulator and effector genes in inducible circuits. J. Mol. Biol. 255, 121–139 (1996).

    Article  CAS  Google Scholar 

  27. Rosenfeld, N., Elowitz, M.B. & Alon, U. Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol. 323, 785–793 (2002).

    Article  CAS  Google Scholar 

  28. Roberts, C.J. et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287, 873–880 (2000).

    Article  CAS  Google Scholar 

  29. Cherry, J.M. et al. SGD: Saccharomyces Genome Database. Nucleic Acids Res. 26, 73–79 (1998).

    Article  CAS  Google Scholar 

  30. Hodges, P.E., McKee, A.H., Davis, B.P., Payne, W.E. & Garrels, J.I. The Yeast Proteome Database (YPD): a model for the organization and presentation of genome-wide functional data. Nucleic Acids Res. 27, 69–73 (1999).

    Article  CAS  Google Scholar 

  31. Duda, R.O. & Hart, P.E. Pattern classification and scene analysis (John Wiley & Sons, New York, 1973).

    Google Scholar 

  32. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  33. Mewes, H.W., Albermann, K., Heumann, K., Liebl, S. & Pfeiffer, F. MIPS: a database for protein sequences, homology data and yeast genome information. Nucleic Acids Res. 25, 28–30 (1997).

    Article  CAS  Google Scholar 

  34. Kanehisa, M., Goto, S., Kawashima, S. & Nakaya, A. The KEGG databases at GenomeNet. Nucleic Acids Res. 30, 42–46 (2002).

    Article  CAS  Google Scholar 

  35. Segal, E., Taskar, B., Gasch, A., Friedman, N. & Koller, D. Rich probabilistic models for gene expression. Bioinformatics 17 Suppl 1, S243–S252 (2001).

    Article  Google Scholar 

  36. Heckerman, D. A tutorial on learning with Bayesian networks. in Learning in Graphical Models (ed. Jordan, M.I.) 301–354 (MIT Press, Cambridge, Massachusetts 1998).

    Chapter  Google Scholar 

  37. Dempster, A.P., Laird, N.M. & Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1–39 (1977).

    Google Scholar 

  38. Friedman, N. The Bayesian structural EM algorithm. in Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI) 129–138 (1998).

    Google Scholar 

  39. Wingender, E. et al. The TRANSFAC system on gene expression regulation. Nucleic Acids Res. 29, 281–283 (2001).

    Article  CAS  Google Scholar 

  40. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  41. Edgar, R., Domrachev, M. & Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    Article  CAS  Google Scholar 

  42. Mayordomo, I., Estruch, F. & Sanz, P. Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes. J. Biol. Chem. 277, 35650–35656 (2002).

    Article  CAS  Google Scholar 

  43. Gorner, W. et al. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev. 12, 586–597 (1998).

    Article  CAS  Google Scholar 

  44. Zahringer, H., Thevelein, J.M. & Nwaka, S. Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Mol. Microbiol. 35, 397–406 (2000).

    Article  CAS  Google Scholar 

  45. Boy-Marcotte, E., Perrot, M., Bussereau, F., Boucherie, H. & Jacquet, M. Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J. Bacteriol. 180, 1044–1052 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Inoue, Y., Tsujimoto, Y. & Kimura, A. Expression of the glyoxalase I gene of Saccharomyces cerevisiae is regulated by high osmolarity glycerol mitogen-activated protein kinase pathway in osmotic stress response. J. Biol. Chem. 273, 2977–2983 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Garwin, M. Scott, G. Simchen and L. Stryer for their useful comments on earlier versions of this manuscript and A. Kaushal, T. Pham, A. Tanay and R. Yelensky for technical help with software and visualization. E.S., D.K. and N.F. were supported by a National Science Foundation grant under the Information Technology Research program. E.S. was also supported by a Stanford Graduate Fellowship. M.S was supported by the Stanford University School of Medicine Dean's Fellowship. A.R. was supported by the Colton Foundation. D.P. was supported by an Eshkol Fellowship. N.F. was also supported by an Alon Fellowship, by the Harry & Abe Sherman Senior Lectureship in Computer Science and by the Israeli Ministry of Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eran Segal or Daphne Koller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segal, E., Shapira, M., Regev, A. et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34, 166–176 (2003). https://doi.org/10.1038/ng1165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy