Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

eXtasy: variant prioritization by genomic data fusion

Abstract

Massively parallel sequencing greatly facilitates the discovery of novel disease genes causing Mendelian and oligogenic disorders. However, many mutations are present in any individual genome, and identifying which ones are disease causing remains a largely open problem. We introduce eXtasy, an approach to prioritize nonsynonymous single-nucleotide variants (nSNVs) that substantially improves prediction of disease-causing variants in exome sequencing data by integrating variant impact prediction, haploinsufficiency prediction and phenotype-specific gene prioritization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Receiver operating characteristic (ROC) curves comparing eXtasy and classical deleteriousness prediction scores.

Similar content being viewed by others

References

  1. Adzhubei, I.A. et al. Nat. Methods 7, 248–249 (2010).

    Article  CAS  Google Scholar 

  2. Ng, P.C. & Henikoff, S. Nucleic Acids Res. 31, 3812 (2003).

    Article  CAS  Google Scholar 

  3. Schwarz, J.M., Rödelsperger, C., Schuelke, M. & Seelow, D. Nat. Methods 7, 575–576 (2010).

    Article  CAS  Google Scholar 

  4. Kumar, S., Sanderford, M., Gray, V.E., Ye, J. & Liu, L. Nat. Methods 9, 855–856 (2012).

    Article  CAS  Google Scholar 

  5. Chun, S. & Fay, J.C. Genome Res. 19, 1553–1561 (2009).

    Article  CAS  Google Scholar 

  6. Asthana, S. et al. Proc. Natl. Acad. Sci. USA 104, 12410–12415 (2007).

    Article  CAS  Google Scholar 

  7. Tennessen, J.A. et al. Science 337, 64–69 (2012).

    Article  CAS  Google Scholar 

  8. Moreau, Y. & Tranchevent, L.-C. Nat. Rev. Genet. 13, 523–536 (2012).

    Article  CAS  Google Scholar 

  9. Aerts, S. et al. Nat. Biotechnol. 24, 537–544 (2006).

    Article  CAS  Google Scholar 

  10. Huang, N., Lee, I., Marcotte, E.M. & Hurles, M.E. PLoS Genet. 6, e1001154 (2010).

    Article  Google Scholar 

  11. Breiman, L. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  12. Stenson, P.D. et al. Genome Med. 1, 13 (2009).

    Article  Google Scholar 

  13. Myers, C.L., Barrett, D.R., Hibbs, M.A., Huttenhower, C. & Troyanskaya, O.G. BMC Genomics 7, 187 (2006).

    Article  Google Scholar 

  14. Yandell, M. et al. Genome Res. 21, 1529–1542 (2011).

    Article  CAS  Google Scholar 

  15. Ionita-Laza, I. et al. Am. J. Hum. Genet. 89, 701–712 (2011).

    Article  CAS  Google Scholar 

  16. Robinson, P.N. et al. Am. J. Hum. Genet. 83, 610–615 (2008).

    Article  CAS  Google Scholar 

  17. Köhler, S. et al. Am. J. Hum. Genet. 85, 457–464 (2009).

    Article  Google Scholar 

  18. Liu, X., Jian, X. & Boerwinkle, E. Hum. Mutat. 32, 894–899 (2011).

    Article  CAS  Google Scholar 

  19. Lopes, M.C. et al. Hum. Hered. 73, 47–51 (2012).

    Article  CAS  Google Scholar 

  20. Pertea, M., Pertea, G.M. & Salzberg, S.L. BMC Bioinformatics 12, 274 (2011).

    Article  Google Scholar 

  21. Siepel, A. et al. Genome Res. 15, 1034–1050 (2005).

    Article  CAS  Google Scholar 

  22. Vihinen, M. BMC Genomics 13 (suppl. 4), S2 (2012).

    Article  Google Scholar 

  23. Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. BMC Bioinformatics 9, 307 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Research Council KU Leuven: GOA/10/09 Manet, PFV/10/016 SymBioSys, IOF 3M120274 Immunosuppressive drugs; iMinds: SBO 2013; Hercules Stichting: Hercules III PacBio RS; the Flemish Institute for Science and Technology: IWT-SB/093289, IWT-TBM Haplotyping; EU: Cost Action BM1006: NGS Data Analysis Network, FCT Neuroclinomics.

Author information

Authors and Affiliations

Authors

Contributions

A.S., D.P. and Y.M. conceptually defined the project. A.S. and D.P. wrote the initial draft of the manuscript and performed the analyses. A.S. generated the data sets and developed the software tools. D.P. developed the benchmarks and trained the models. L.-C.T. and A.S. computed the Endeavour gene prioritizations. A.A. and A.S. developed the web tool. R.S. and J.A. advised on data visualization and visual analytics. P.K. advised on statistical concerns. J.R.V. advised on genetical concerns. All authors revised and proofread the paper. B.D.M. cosupervised the project. Y.M. supervised the project.

Corresponding author

Correspondence to Yves Moreau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1–5 and Supplementary Notes 1 and 2 (PDF 1456 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sifrim, A., Popovic, D., Tranchevent, LC. et al. eXtasy: variant prioritization by genomic data fusion. Nat Methods 10, 1083–1084 (2013). https://doi.org/10.1038/nmeth.2656

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2656

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy