Abstract
The transcriptional state of a cell reflects a variety of biological factors, from cell-type-specific features to transient processes such as the cell cycle, all of which may be of interest. However, identifying such aspects from noisy single-cell RNA-seq data remains challenging. We developed pathway and gene set overdispersion analysis (PAGODA) to resolve multiple, potentially overlapping aspects of transcriptional heterogeneity by testing gene sets for coordinated variability among measured cells.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Islam, S. et al. Nat. Methods 11, 163–166 (2014).
Picelli, S. et al. Nat. Methods 10, 1096–1098 (2013).
Tang, F. et al. PLoS ONE 6, e21208 (2011).
Usoskin, D. et al. Nat. Neurosci. 18, 145–153 (2015).
Zeisel, A. et al. Science 347, 1138–1142 (2015).
Buettner, F. et al. Nat. Biotechnol. 33, 155–160 (2015).
Macosko, E.Z. et al. Cell 161, 1202–1214 (2015).
Klein, A.M. et al. Cell 161, 1187–1201 (2015).
Patel, A.P. et al. Science 344, 1396–1401 (2014).
Grün, D., Kester, L. & van Oudenaarden, A. Nat. Methods 11, 637–640 (2014).
Buettner, F. & Theis, F.J. Bioinformatics 28, i626–i632 (2012).
van der Maaten, L.J.P. & Hinton, G.E. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Jaitin, D.A. et al. Science 343, 776–779 (2014).
Subramanian, A., Kuehn, H., Gould, J., Tamayo, P. & Mesirov, J.P. Bioinformatics 23, 3251–3253 (2007).
Blaschke, A.J., Staley, K. & Chun, J. Development 122, 1165–1174 (1996).
Rehen, S.K. et al. Proc. Natl. Acad. Sci. USA 98, 13361–13366 (2001).
Peterson, S.E. et al. J. Neurosci. 32, 16213–16222 (2012).
Herr, K.J., Herr, D.R., Lee, C.W., Noguchi, K. & Chun, J. Proc. Natl. Acad. Sci. USA 108, 15444–15449 (2011).
Kharchenko, P.V., Silberstein, L. & Scadden, D.T. Nat. Methods 11, 740–742 (2014).
Pollen, A.A. et al. Nat. Biotechnol. 32, 1053–1058 (2014).
Kawaguchi, A. et al. Development 135, 3113–3124 (2008).
Kriegstein, A., Noctor, S. & Martinez-Cerdeno, V. Nat. Rev. Neurosci. 7, 883–890 (2006).
Lein, E.S. et al. Nature 445, 168–176 (2007).
Englund, C. et al. J. Neurosci. 25, 247–251 (2005).
Uetsuki, T., Takagi, K., Sugiura, H. & Yoshikawa, K. J. Biol. Chem. 271, 918–924 (1996).
Minamide, R., Fujiwara, K., Hasegawa, K. & Yoshikawa, K. PLoS ONE 9, e84460 (2014).
Huang, Z., Fujiwara, K., Minamide, R., Hasegawa, K. & Yoshikawa, K. J. Neurosci. 33, 10362–10373 (2013).
Anderson, S.A., Eisenstat, D.D., Shi, L. & Rubenstein, J.L. Science 278, 474–476 (1997).
Wonders, C.P. & Anderson, S.A. Nat. Rev. Neurosci. 7, 687–696 (2006).
Ma, T. et al. Cereb. Cortex 22, 2120–2130 (2012).
Anders, S. & Huber, W. Genome Biol. 11, R106 (2010).
Fisher, R.A. Statistical Methods for Research Workers (Hafner, 1970).
Abdel, H.E. Encyclopedia of Environmetrics 2nd edn (Wiley, 2012).
Hasings, C., Mosteller, F., Tukey, J.W. & Winsor, C.P. Ann. Math. Stat. 18, 413–426 (1974).
Bailey, S. Publ. Astron. Soc. Pac. 124, 1023 (2012).
Johnstone, I.M. Ann. Stat. 29, 295–327 (2001).
Benjamini, Y. & Hochberg, Y. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).
Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. Nat. Biotechnol. 33, 495–502 (2015).
Achim, K. et al. Nat. Biotechnol. 33, 503–509 (2015).
Acknowledgements
We thank D. Usoskin, P. Ernfors and S. Linnarsson for helpful comments on the analysis approach. This work was supported by an Ellison Medical Foundation award and a US National Science Foundation (NSF) CAREER award (NSF-14-532) to P.V.K., an NSF graduate research fellowship (DGE1144152) to J.F., and US National Institutes of Health (NIH) grants U01 MH098977 (to K.Z. and J.C.) and NIH R01 NS084398 (to J.C.). G.E.K. was supported by NIH grant T32 AG00216.
Author information
Authors and Affiliations
Contributions
K.Z., J.C. and P.V.K. conceived the study. N.S., R.L., G.E.K., Y.C.Y., F.K. and J.-B.F. carried out the single-cell purification and RNA-seq measurements. G.E.K. and J.C. carried out RNAscope in situ validation. J.F. and P.V.K. designed and implemented the statistical analysis approach, with the help of J.L.H. P.V.K. and J.F. wrote the manuscript with the help of J.C. and K.Z.
Corresponding author
Ethics declarations
Competing interests
N.S. and F.K. are a current employees and shareholders of Illumina, Inc.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–5 and Supplementary Notes 1–3 (PDF 9354 kb)
Supplementary Software
Source code: SCDE R Package (ZIP 1862 kb)
Rights and permissions
About this article
Cite this article
Fan, J., Salathia, N., Liu, R. et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat Methods 13, 241–244 (2016). https://doi.org/10.1038/nmeth.3734
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmeth.3734
This article is cited by
-
Representation and quantification of module activity from omics data with rROMA
npj Systems Biology and Applications (2024)
-
Directionality of developing skeletal muscles is set by mechanical forces
Nature Communications (2023)
-
A pan-tissue survey of mosaic chromosomal alterations in 948 individuals
Nature Genetics (2023)
-
Endothelial sensing of AHR ligands regulates intestinal homeostasis
Nature (2023)
-
A multifunctional Wnt regulator underlies the evolution of rodent stripe patterns
Nature Ecology & Evolution (2023)