Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Schrödinger cat states of a nuclear spin qudit in silicon

Abstract

High-dimensional quantum systems are a valuable resource for quantum information processing. They can be used to encode error-correctable logical qubits, which has been demonstrated using continuous-variable states in microwave cavities or the motional modes of trapped ions. For example, high-dimensional systems can be used to realize ‘Schrödinger cat’ states, which are superpositions of widely displaced coherent states that can be used to illustrate quantum effects at large scales. Recent proposals have suggested encoding qubits in high-spin atomic nuclei, which are finite-dimensional systems that can host hardware-efficient versions of continuous-variable codes. Here we demonstrate the creation and manipulation of Schrödinger cat states using the spin-7/2 nucleus of an antimony atom embedded in a silicon nanoelectronic device. We use a multi-frequency control scheme to produce spin rotations that preserve the symmetry of the qudit, and we constitute logical Pauli operations for qubits encoded in the Schrödinger cat states. Our work demonstrates the ability to prepare and control non-classical resource states, which is a prerequisite for applications in quantum information processing and quantum error correction, using our scalable, manufacturable semiconductor platform.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The eight-dimensional 123Sb nuclear spin qudit in silicon.
Fig. 2: Covariant SU(2) rotations.
Fig. 3: Creation of Schrödinger cat states.
Fig. 4: Dephasing of spin coherent states and Schrödinger cat states.

Similar content being viewed by others

Data availability

Source data are available via Dryad at https://doi.org/10.5061/dryad.931zcrjtf (ref. 49).

Code availability

Scripts to analyse the source data are available via Dryad at https://doi.org/10.5061/dryad.931zcrjtf (ref. 49).

References

  1. Slichter, C. P. Principles of Magnetic Resonance, Vol. 1 (Springer Science & Business Media, 2013).

  2. Kochen, S. & Specker, E. The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59 (1967).

    MathSciNet  MATH  Google Scholar 

  3. Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    Article  ADS  MATH  Google Scholar 

  4. Braunstein, S. L. & Van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).

    Article  ADS  MATH  Google Scholar 

  6. Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020).

    Article  MATH  Google Scholar 

  7. Walschaers, M. Non-Gaussian quantum states and where to find them. PRX Quantum 2, 030204 (2021).

    Article  ADS  MATH  Google Scholar 

  8. Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R. & Grangier, P. Generation of optical ‘Schrödinger cats’ from photon number states. Nature 448, 784–786 (2007).

    Article  ADS  Google Scholar 

  9. Grimm, A. et al. Stabilization and operation of a Kerr-cat qubit. Nature 584, 205–209 (2020).

    Article  ADS  MATH  Google Scholar 

  10. Lescanne, R. et al. Exponential suppression of bit-flips in a qubit encoded in an oscillator. Nat. Phys. 16, 509–513 (2020).

    Article  MATH  Google Scholar 

  11. Kenfack, A. & Życzkowski, K. Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B: Quantum Semiclass. Opt. 6, 396 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Wang, Y., Hu, Z., Sanders, B. C. & Kais, S. Qudits and high-dimensional quantum computing. Front. Phys. 8, 589504 (2020).

    Article  MATH  Google Scholar 

  13. Anderson, B., Sosa-Martinez, H., Riofrío, C., Deutsch, I. H. & Jessen, P. S. Accurate and robust unitary transformations of a high-dimensional quantum system. Phys. Rev. Lett. 114, 240401 (2015).

    Article  ADS  Google Scholar 

  14. Blok, M. S. et al. Quantum information scrambling on a superconducting qutrit processor. Phys. Rev. X 11, 021010 (2021).

    MATH  Google Scholar 

  15. Chalopin, T. et al. Quantum-enhanced sensing using non-classical spin states of a highly magnetic atom. Nat. Commun. 9, 4955 (2018).

    Article  ADS  MATH  Google Scholar 

  16. Hrmo, P. et al. Native qudit entanglement in a trapped ion quantum processor. Nat. Commun. 14, 2242 (2023).

    Article  ADS  MATH  Google Scholar 

  17. Gross, J. A. Designing codes around interactions: the case of a spin. Phys. Rev. Lett. 127, 010504 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gross, J. A., Godfrin, C., Blais, A. & Dupont-Ferrier, E. Hardware-efficient error-correcting codes for large nuclear spins. Phys. Rev. Appl. 22, 014006 (2024).

    Article  Google Scholar 

  19. Omanakuttan, S., Buchemmavari, V., Gross, J. A., Deutsch, I. H. & Marvian, M. Fault-tolerant quantum computation using large spin-cat codes. PRX Quantum 5, 020355 (2024).

    Article  ADS  Google Scholar 

  20. Asaad, S. et al. Coherent electrical control of a single high-spin nucleus in silicon. Nature 579, 205–209 (2020).

    Article  ADS  MATH  Google Scholar 

  21. Fernández de Fuentes, I. et al. Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields. Nat. Commun. 15, 1380 (2024).

    Article  ADS  MATH  Google Scholar 

  22. Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).

    Article  ADS  Google Scholar 

  23. Bullock, S. S., O’Leary, D. P. & Brennen, G. K. Asymptotically optimal quantum circuits for d-level systems. Phys. Rev. Lett. 94, 230502 (2005).

    Article  ADS  MATH  Google Scholar 

  24. Leuenberger, M. N. & Loss, D. Grover algorithm for large nuclear spins in semiconductors. Phys. Rev. B 68, 165317 (2003).

    Article  ADS  MATH  Google Scholar 

  25. Faist, P. et al. Continuous symmetries and approximate quantum error correction. Phys. Rev. X 10, 041018 (2020).

    MATH  Google Scholar 

  26. Cybenko, G. Reducing quantum computations to elementary unitary operations. Comput. Sci. Eng. 3, 27–32 (2001).

    Article  MATH  Google Scholar 

  27. Gupta, P., Vaartjes, A., Yu, X., Morello, A. & Sanders, B. C. Robust macroscopic Schrödinger’s cat on a nucleus. Phys. Rev. Res. 6, 013101 (2024).

    Article  Google Scholar 

  28. Heeres, R. W. et al. Cavity state manipulation using photon-number selective phase gates. Phys. Rev. Lett. 115, 137002 (2015).

    Article  ADS  Google Scholar 

  29. McKay, D. C., Wood, C. J., Sheldon, S., Chow, J. M. & Gambetta, J. M. Efficient z gates for quantum computing. Phys. Rev. A 96, 022330 (2017).

    Article  ADS  Google Scholar 

  30. Saeedi, K. et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830–833 (2013).

    Article  ADS  MATH  Google Scholar 

  31. Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol. 9, 986–991 (2014).

    Article  ADS  MATH  Google Scholar 

  32. Fröwis, F., Sekatski, P., Dür, W., Gisin, N. & Sangouard, N. Macroscopic quantum states: measures, fragility, and implementations. Rev. Mod. Phys. 90, 025004 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Kubischta, E. & Teixeira, I. Permutation-invariant quantum codes with transversal generalized phase gates. Preprint at https://arxiv.org/abs/2310.17652 (2023).

  34. Knill, E. & Laflamme, R. Theory of quantum error-correcting codes. Phys. Rev. A 55, 900 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Lim, S., Liu, J. & Ardavan, A. Fault-tolerant qubit encoding using a spin-7/2 qudit. Phys. Rev. A 108, 062403 (2023).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Madzik, M. T. et al. Precision tomography of a three-qubit donor quantum processor in silicon. Nature 601, 348–353 (2022).

    Article  ADS  MATH  Google Scholar 

  37. Jakob, A. M. et al. Scalable atomic arrays for spin-based quantum computers in silicon. Adv. Mater. 36, 2405006 (2024).

  38. Morello, A., Pla, J. J., Bertet, P. & Jamieson, D. N. Donor spins in silicon for quantum technologies. Adv. Quantum Technol. 3, 2000005 (2020).

    Article  MATH  Google Scholar 

  39. Tosi, G. et al. Silicon quantum processor with robust long-distance qubit couplings. Nat. Commun. 8, 450 (2017).

    Article  ADS  MATH  Google Scholar 

  40. Wang, Z. et al. Jellybean quantum dots in silicon for qubit coupling and on-chip quantum chemistry. Adv. Mater. 35, 2208557 (2023).

    Article  Google Scholar 

  41. Zwerver, A. et al. Qubits made by advanced semiconductor manufacturing. Nat. Electron. 5, 184–190 (2022).

    Article  Google Scholar 

  42. Champion, E., Wang, Z., Parker, R. & Blok, M. Multi-frequency control and measurement of a spin-7/2 system encoded in a transmon qudit. Preprint at https://arxiv.org/abs/2405.15857 (2024).

  43. Roy, S. et al. Synthetic high angular momentum spin dynamics in a microwave oscillator. Preprint at https://arxiv.org/abs/2405.15695 (2024).

  44. Heiss, S. & Weigert, S. Discrete Moyal-type representations for a spin. Phys. Rev. A 63, 012105 (2000).

  45. Millen, N. et al. Generalized phase-space techniques to explore quantum phase transitions in critical quantum spin systems. Ann. Phys. 458, 169459 (2023).

    Article  MathSciNet  MATH  Google Scholar 

  46. Kalra, R. et al. Vibration-induced electrical noise in a cryogen-free dilution refrigerator: characterization, mitigation, and impact on qubit coherence. Rev. Sci. Instrum. 87, 073905 (2016).

  47. Dehollain, J. et al. Nanoscale broadband transmission lines for spin qubit control. Nanotechnology 24, 015202 (2012).

    Article  ADS  MATH  Google Scholar 

  48. Godfrin, C. et al. Generalized Ramsey interferometry explored with a single nuclear spin qudit. npj Quantum Inf. 4, 53 (2018).

    Article  ADS  MATH  Google Scholar 

  49. Yu, X. et al. Schrödinger cat states of a nuclear spin qudit in silicon. Dryad https://doi.org/10.5061/dryad.931zcrjtf (2024).

Download references

Acknowledgements

We thank J. A. Gross, V. Scarani, J. Marshall and J. Saied for insightful discussions. The research was funded by an Australian Research Council Discovery Project (Grant No. DP210103769), the US Army Research Office (Contract No. W911NF-23-1-0113) and the Australian Department of Industry, Innovation and Science (Grant No. AUSMURI000002). We acknowledge the facilities and the scientific and technical assistance provided by the UNSW node of the Australian National Fabrication Facility (ANFF) and by the Heavy Ion Accelerators (HIA) nodes at the University of Melbourne and the Australian National University. ANFF and HIA are supported by the Australian Government through the National Collaborative Research Infrastructure Strategy programme. Ion beam facilities employed by D.N.J. and A.M.J. were co-funded by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (Grant No. CE170100012). X.Y., B.W., M.R.v.B. and A.V. acknowledge support from the Sydney Quantum Academy. D.N.J. acknowledges the support of a Royal Society (UK) Wolfson Visiting Fellowship (RSWVF/211016). P.G. and B.C.S. acknowledge funding from the Natural Sciences and Engineering Research Council of Canada, Alberta Innovates and the Government of Alberta. N.A. is a KBR employee working under Prime Contract No. 80ARC020D0010 with the NASA Ames Research Center and is grateful for the collaborative agreement between NASA and CQC2T. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the US Government. The US Government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation herein. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the US Department of Energy or the United States Government.

Author information

Authors and Affiliations

Authors

Contributions

X.Y., B.W., A.V., D.S., M.N., D.H., A.K., M.R.v.B. and A.M. conceived and designed the experiments, with theoretical input from P.G., B.C.S. and N.A. X.Y., B.W., A.V., M.N., D.H., D.S., A.K. and M.R.v.B. performed and analysed the measurements. D.H. and F.E.H. fabricated the device under A.S.D.’s supervision using materials supplied by K.M.I. A.M.J., D.H. and D.N.J. designed and performed the ion implantation. R.J.M., R.B.-K. and T.D.L. contributed to the data analysis. A.M., X.Y., B.W., D.H., A.V., R.B.-K., P.G., T.D.L. and N.A. wrote the manuscript with input from all co-authors. A.M. supervised the project.

Corresponding author

Correspondence to Andrea Morello.

Ethics declarations

Competing interests

A.M. is an inventor on a patent related to this work. The patent describes the use of high-spin donor nuclei as quantum information processing elements (Application Nos. AU2019227083A1, US16/975,669 and WO2019165494A1). A.S.D. is the chief executive officer and a director of Diraq Pty Ltd. F.E.H. and A.S.D. declare an equity interest in Diraq Pty Ltd. The other authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks John Morton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–12, References and Figs. 1–19.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Wilhelm, B., Holmes, D. et al. Schrödinger cat states of a nuclear spin qudit in silicon. Nat. Phys. (2025). https://doi.org/10.1038/s41567-024-02745-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02745-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy