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We assume prior independence between all model parameters. In principle, a prior for the biological gene-
specific normalised expression rates fi1, . . ., fiq, could be elicited from an expert’s opinion. Nonetheless, this
is not trivial in this context, especially when qq is large and/or novel genes are being analysed. Hence, as an
alternative, we adopt the improper non-informative prior:
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which induces, over the real line, a uniform prior for each log(u;) (this prior is improper because the in-
tegral of m(u1,...,q,) over the support of (i1,...,[q,) is not finite, i.e. it is not a well defined den-
sity function). In the absence of reliable prior information, the Bayesian literature widely recommends this
prior for Poisson rates [1]. We assume proper prior distributions for all other parameters with 41, ..., dg, iid
Gamma(ag, bs), K2, .- ., Kn iid Normal(0, 02), s1,---,8n id Gamma(as, bs) and 8 ~ Gamma(ag, by) for

fixed hyper-parameter values as, bs, 52, as, bs, ag and by. The analysis of simulated and real datasets suggested
that the choice of these hyper-parameters does not have major consequences in posterior inference (this is illus-
trated in Fig S1. in S2 Text, using the mouse ESC dataset analysed throughout the paper). The proposed prior
can be represented as

T(p1, .oy fgey 01, - - -5 0gq, 0) X [H w(ui)] [H W(éi)] H m(kj) H 7(s;j)| m(0), (S2)
i=1 i=1 j=2 j=1

where () o< p; ! and all the other components induce proper prior distributions for the corresponding
parameters. While using non informative priors is a convenient solution that avoids the need of prior elicitation
(the prior of u;, which is the improper part, does not require the elicitation of hyper-parameters), it has the
associated risk of producing invalid posterior inference. Hence, as the prior in (S2) is improper, posterior
propriety must be verified. However, as shown by the following theorem, a sufficient condition for posterior
existence is that each biological gene must be expressed (positive count) in at least one cell.

Theorem 1

Let {x;; : ¢ = 1,...,¢,5 = 1,...,n} be ng observations generated by the model in equations (2) and (3)
of the main paper. Assume the prior in (S2). The joint posterior distribution of all model parameters is well
defined if and only if min;ey . 40} Z?Zl x;5 ¢ > 0, 1.e. if and only if each biological gene is expressed in at
least one cell.

Proof. Let fi(-|s;,0) and fa(-|0;) represent the densities associated to the random effects v; and p;;, respec-
tively (in BASiCS, we assume these densities belong to a Gamma family but this theorem is general, being also
valid if other distributions are adopted for the random effects). The posterior distribution of all model param-
eters is well defined if and only if the marginal likelihood of the model (after integrating all model parameters



with respect to their prior) is finite. Here, it is given by
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and ¢;’s defined as a function of «;’s as in equation (11) of the main paper. Using Fubini’s theorem in (S3) and

integrating first with respect to the yi1, . . ., fiq,, (S3) is equal to
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Therefore, (S3) is not finite unless min;e(y,. 40} {Z?:i x,-j} > 0. In addition, as each L; is a product of

Poisson probabilities Hg, o+1 Li < 1. Hence, replacing (S7) in (S5), (S3) has an upper bound proportional to
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Hence, because 7(6;), m(k;), 7(s;) and 7r(9) define proper prior densities, (S9) is equal to 1 and, consequently,
O

(S3) is finite.
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