
(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Developing Unicode-aware
Applications in Python

Preparing an application for
internationalization (i18n) and

localization (l10n)

LSM Conference 2005
Dijon, France

Marc-André Lemburg

EGENIX.COM Software GmbH
Germany

2

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Speaker Introduction: Marc-André Lemburg

• CEO eGenix.com and Consultant
– More than 20 years software experience
– Diploma in Mathematics
– Expert in Python, OOP, Web Technologies and Unicode
– Python Core Developer
– Python Software Foundation Board Member (2002-04)
– Contact: mal@egenix.com

• eGenix.com Software GmbH, Germany
– Founded in 2000
– Core business:

• Consulting: helping companies write successful Python software
• Product design: professional quality Python/Zope

developer tools (mxODBC, mxDateTime, mxTextTools, etc.)
– International customer base

mailto:mal@egenix.com

3

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Agenda

1. Introduction

2. Preparation for Internationalization

3. Adding Translation Support

4. Translation Tools

5. Interoperability

6. Localization

7. Discussion

4

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Introduction

1. Introduction

2. Preparation for Internationalization

3. Adding Translation Support

4. Translation Tools

5. Interoperability

6. Localization

7. Discussion

5

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Motivation: Why Unicode ?

• Storing scripts: human readable text data

– Localization (l10n) and Internationalization (i18n) of
software and GUIs

– Basis for national language and script support

– Common ground for textual information
exchange

6

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

The Unicode Consortium Solution

• One encoding for all scripts of the world

• ASCII compatibility (even Latin-1)

• Includes character meta data
– Case mapping information
– Numeric conversion
– Character category information

• Accounts for scripts using different orientations

• Enables sorting and normalization support
 Also see the Unicode Consortium web-site at http://www.unicode.org/

7

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Unicode Terminology: What is a Character ?

• Unicode Terminology

– Graphemes:

This is what users regard as a character.

– Code Points:

 This is an Unicode encoding of the string.

– Code Units:

 This is what the implementation stores (UTF-8).

Combining

0xCC 0x81
UTF-8 for U+0301

d r é L e

d r ´ L ee
U+0301

Accent Acute

d r L ee Ì �

8

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Unicode Statistics

• Unicode 4.1.0
– 1,114,112 code points available
– 97,655 code points assigned

• 1,273 code point assignments were added in Unicode 4.1.0
compared to Unicode 4.0

– 70,207 of these are part of a Han subset used for Asian scripts
– Most assignments in the first 65536 code points

(BMP - Basic Multilingual Plane)

• Python supports Unicode version 3.2 (in Python 2.4)

9

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Unicode features included in Python

• Native Unicode Type
– very efficient
– performance comparable to strings

(sometime even better)

• Large set of built-in codecs
– to convert between Unicode and various encodings

(among other things)

• Unicode code point database
– information on code point properties

• Partial support for OS based Unicode I/O
– still in the making

10

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Unicode literals in Python

• Source code encoding
– Defines the encoding used for the Python source code
– Must appear in the first two lines of a Python program
– Format: # -*- coding: latin-1 -*-

• Unicode literals
– String literals prefixed with a small u
– Get converted to a Unicode object
– Format: u”this is a latin-1 string (éèàôäöü)”

11

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Pitfalls in writing Unicode-aware Python applications

• Not all Python modules/extensions expect Unicode
– UnicodeError (due to ASCII conversion)
– TypeError (tool expected a string)
– Work-around: explicit encoding/decoding

• Operating Systems
– don’t all handle Unicode well
– Python doesn’t always use their Unicode support
– Work-around: use ASCII OS-identifiers wherever possible

• Tool-chain:
– Unicode is still in the process of being adopted

– we’re not quite there yet… YMMV

12

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Preparation for Internationalization (i18n)

1. Introduction

2. Preparation for Internationalization

3. Adding Translation Support

4. Translation Tools

5. Interoperability

6. Localization

7. Discussion

13

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

General principles in preparation for i18n

1. Use Unicode for all text in the application /
presentation data
– Avoid mixing strings and Unicode

2. Use explicit encoding/decoding in all I/O operations
– Avoid Python’s automatic coercion mechanisms
– Encodings are usually application and locale dependent

14

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

I18n approach in Python: Basics

• Choose a default language

• Always define the source code encoding
– should be suitable for your default language
– Example: # -*- coding: latin-1 -*-

• Always use Unicode literals for all text
– written in your default language
– Example: u”use your preferred default language”

– Important:
These strings will be used as keys to find their own translation

15

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

I18n approach in Python: Prepare for automatic translation

• Enclose all literals in a call to a translation function
translate(u”Save Document”)
translate(u”Save Document”, topic=u“Menu”)
_(u”Save Document”) (for those who don’t like typing ☺)

• Always inline formatting specifiers into literals
_(u”this will cause ”) + many + _(u”translation problems”)
_(u”this is much %s translation friendly”) % (more)

• Try not to break literals unnecessarily
_(u”complete sentences are usually easier to translate…”)
_(u”…than short snippets without context”)

16

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Translation Problems

• Strings can have different translations
depending on context
– Use topics (aka domains, categories)

• A single string in one language can have
multiple translations in other languages
– Try to make the string more descriptive, or
– Add helper context which the translation function

then removes again for the default language

• Missing translation ?
– Fallback to the default language

17

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Adding Translation Support

1. Introduction

2. Preparation for Internationalization

3. Adding Translation Support

4. Translation Tools

5. Interoperability

6. Localization

7. Discussion

18

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Translation Tools: GNU gettext tool chain

• Python gettext module (Python license)
– provides translation function

• Many available tools:
– to extract literals from source code (xgettext)
– manage translations
– compile translations for quick lookup

• Problem:
– limited topic support
– not context-aware (at least not out of the box)
– hard to extend

19

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Translation Tools: eGenix approach

• Use a TranslationComponent in the application
– translations stored in the database
– provides translation function
– “knows” what the application is doing: context aware

• String extraction:
– dynamically at run-time
– statically, by scanning source code and/or presentation data

20

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Translation Tools: eGenix approach (cont.)

• Managing translations:
Import/export translations to Excel Unicode CSV files
– easy to pass to translation studios
– can include topic information

• Advantages of the approach:
– context- and topic-aware
– easily extendable
– tested and proven in real-life applications

21

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Interoperability

1. Introduction

2. Preparation for Internationalization

3. Adding Translation Support

4. Translation Tools

5. Interoperability

6. Localization

7. Discussion

22

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Application Interoperability

• For best interop, use UTF-8 as Unicode transfer format
– Best supported transfer format

• Avoid UTF-16, if possible
– Byte ordering issues can be troublesome

• Avoid lossy encodings such as Latin-1, ASCII, etc.

23

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Common Unicode transfer formats

• Browsers
– UTF-8 (good support on all platforms)

• Text Editors
– UTF-8 (Joe, Emacs on Unix)
– UTF-16-LE (Notepad, Word on Windows)

• Excel
– CSV files: UTF-16-LE

• Terminals / Shells
– UTF-8

24

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Detecting character sets / encodings

• Very hard problem (in general)

• Some encodings help
– UTF-16 uses BOMs (byte order marks)
– UTF-8 sometimes does too

• The application may have enough knowledge to
detect the encoding based on the context …
– … or it may not /

25

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Localization (l10n)

1. Introduction

2. Preparation for Internationalization

3. Adding Translation Support

4. Translation Tools

5. Interoperability

6. Localization

7. Discussion

26

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

General things to consider when localizing (l10n)

• Date formats
– 2005-07-07 vs. 07.07.2005 vs. 07/07/2005

• Number formats
– 1.234,567 vs. 1,234.567

• Currency formats
– $12.34 vs. €12,34 vs. 12.34 MUR

• Translations for varying quantities
– Singular and plural form: u”%i file(s)”
– Empty set or zero: u”no files”

27

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

GUI considerations

• Text direction: Left-to-right vs. Right-to-left
– Text
– Menus
– Buttons

• Varying sizes of glyphs depending on language
– e.g. English compared to Japanese

• Accelerator Keys
– will likely have to depend on the language

28

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Discussion

1. Introduction

2. Preparation for Internationalization

3. Adding Translation Support

4. Translation Tools

5. Interoperability

6. Localization

7. Discussion

29

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Developing Unicode-aware applications in Python

• Questions

– What is your biggest problem with Unicode ?

– What tools / features are (still) missing in Python’s
Unicode support ?

30

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

And finally...

Thank you for your time.

31

Unicode-aware Applications in Python

(c) 2005 EGENIX.COM Software GmbH, info@egenix.com LSM Conference 2005

Contact

eGenix.com Software, Skills and Services GmbH
Marc-André Lemburg
Pastor-Löh-Str. 48
D-40764 Langenfeld
Germany

eMail: mal@egenix.com
Phone: +49 211 9304112
Fax: +49 211 3005250
Web: http://www.egenix.com/

mailto:mal@egenix.com
http://www.egenix.com/

	Developing Unicode-aware Applications in Python
	Speaker Introduction: Marc-André Lemburg
	Agenda
	Introduction
	Motivation: Why Unicode ?
	The Unicode Consortium Solution
	Unicode Terminology: What is a Character ?
	Unicode Statistics
	Unicode features included in Python
	Unicode literals in Python
	Pitfalls in writing Unicode-aware Python applications
	Preparation for Internationalization (i18n)
	General principles in preparation for i18n
	I18n approach in Python: Basics
	I18n approach in Python: Prepare for automatic translation
	Translation Problems
	Adding Translation Support
	Translation Tools: GNU gettext tool chain
	Translation Tools: eGenix approach
	Translation Tools: eGenix approach (cont.)
	Interoperability
	Application Interoperability
	Common Unicode transfer formats
	Detecting character sets / encodings
	Localization (l10n)
	General things to consider when localizing (l10n)
	GUI considerations
	Discussion
	Developing Unicode-aware applications in Python
	And finally...
	Contact

