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1. Introduction

“Various statistical measures have been used to judge the forecast skill of a
model. Many scores and skills can be found in the liferature. Wilks (1995) and Jolliffe
and Stephenson (2003) provide a general description on verification methods for
forecasts. Based on temporal and/or spatial data from observations and models, these
. statistical measures usually indicate the overall quality of forecasts in terms of quantities
difficult to measure directly (e.g., kinetic energy specira) rather than variables such as
precipitation, which can be verified using radar ‘and rain gauge measurements. Our
statistical approach is specifically focused on precipitation. '

In our recent analysis of warm-season precipitation over North America (Hsu et
al. 2006a), the temporal spectra for the latitudinally-averaged time series indicate a
remarkable cross-scale self-similarity and periodicity, using both Fourier and wavelet
transforms. Additional analysis of the spatial distributions of rainfall patterns with a 2-D
FFT suggests a power-law scaling over a range of high wave numbers. Skamarock
(2004) analyzed the kinetic energy of flight-track data and Weather Research and
Forecast (WRF) forecasts, and showed similar power-law scaling in his data, using 1-D
FFT, .

For comparing numerical model results with observations, both spectral and
wavelet analyses are effective tools to identify distinct features in spectra, The inverse
wavelet transform has the advantage that it can further reconstruct the data at each
frequency or wave-number effectively. The reconstructed data from observation and
model can be quantitatively assessed at each frequency or wave-number using different
statistical measures. In summary, our statistical-dynamical approach is a unique practical
way fo validate the space-time characteristics of precipitation in high-resolution NWP
models. ’

Our new approach for scale-dependent verification was tested with the WRF
experimental forecasts, which have already shown significant improvement compared to
current operational forecasts. Therefore, we develop and use a multiscale verification
method for precipitation distribution in the WRF forecasts. As an initial demonstration,
and in view of the 1-month commitment, we perform only the time series analysis of



surface precipitation. Measurements of precipitation from NEXRAD (Carbone ef al.
2002) and rain gauges were used to evaluate the simulations.

2. Data

In this study, we use two observed rainfall data sets, one from in sifu rain
gauges and the other from remote-sensed radars. Model forecasts are predicted by the
Weather Research and Forecast (WRF) model system.

During the BAMEX 2003 field campaign (Davis et al., 2004; Done et al.,
2004), WRF provided experimental 36-hour forecasts every day from 00Z. The WRF
forecasts used herein are the later 24-hour rain rates in the region where the 4-km
resolution was configured (Fig. 1). The period we are interesied is the complete one
* month during the BAMEX, June 2003, The forecasts retained are hourly WRF oufputs,
These hourly rainfall forecasts are interpolated onto rain gauge locations to form the time
series for the temporal spectral analysis,. '

Over the region which WRF forecasts were performed, there were rainfall
measurements with the 1l-minute resolution from a number of rain gauges at the
Automated Surface Observing Systems (ASOS) locations. We impose a condition to
retain high-quality data: If an individual rain gauge had data missing for more than 10%
of its complete time series, it was excluded from the analysis. Thus, 93 gauges are
retained, and their locations are plotted in Fig. 1. For these 93 time series, the missing
parts of the time series are filled with zeros.
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Figure 1. The 4-kim WRF forecast region is indicated by the box, and the dots are the
locations of the ASOS rain gauges.




Convective precipitation over the continental US have been measured widely
with the NEXRAD radar network. Each individual radar observation has been
interpolated into a national composite at a resolution of 0,02° in longitude and latitude
(less than 2 km). The original composite radar reflectivity data from the NEXRAD is a
WSI Corporation NOWrad product. These data have been used in the investigations of
warm-season rainfall signals over North America by Carbone et a/. (2000) to identify
- propagating convective streaks. Hsu ef a/ (2006a and 2006b) used the same data to
investigate the temporal and spatial spectral structures, respectively. Hourly composite
reflectivity data were interpolated onto rain gauge locations as done with the WRF
forecasts. A Z-R relationship (Z =300R"®) is applied to convert the reflectivity (Z in dbz)
to the rain rate (R in mm/hr).

3. Temporal Spectra

Afier the rain-rate time series (WRFE, ASOS, and NEXRAD) are prepared, they
are decomposed using the continuous wavelet transform (CWT) with the-Morlet wavelets
as the mother function, as was done in Hsu ef a/. (2006a).

Since the WRF forecasts are available hourly, all the ASOS rain gauge and the
NEXRAD radar data sets are coarse-grained into hourly rain rates. The analysis of the
original ASOS and NEXRAD data will be described elsewhere. .

The global temporal spectra are shown in Fig. 2. The ASOS rain gauge
spectrum (solid curve) and the WRF spectrum (dashed curve) are similar for the low
frequencies up to about 1 cycle/day (cpd), but have significant differences at the high
frequencies. The original NEXRAD spectrum (light dotted curve) has the similar
spectral sfructure with the ASOS one, but its variances are rather large. After the
conversion from reflectivity to rain rate is #ltered (Z =500R'%). The new NEXRAD
spectrum (dotted curve) is very close to the ASOS one. Therefore, the measured spectra
(either observed or predicted) are consistent, while the WRF spectrum has significant
departures at high frequencies. '
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]  Figure 2. The temporal spectra of rain-rate
g variances for ASOS rain gauges (solid
curve), NEXRAD radars (dotted
curves), and WRF forecasts (dashed
curve).
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4. Error Spectra

Although the similarities and differences between model forecast and
observation are identified in frequency space, the relative error measure of model
forecasts in each frequency should shed further light than just one single error measure
for the whole data set. Here is what we propose. At each rain gauge, each time series
(either observed or predicted) is decomposed into frequency space using CWT. At cach
frequency, the spectral coefficients are inversely transformed back into the physical space
to form the time series for that particularly frequency. This procedure can be repeated for
each frequency of the spectrum. Then at each corresponding frequency, the statistical
measure between the forecasted and the observed is calculated to produce the error
spectrum: by definition, a frequency dependent statistical measure. In other words, the
error spectrum shows the temporal scale-dependence of the statistical measure. Here, we
use the correlation coefficient (CC) as an example for the statistical measure.
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Figure.3. Error (correlation coefficient, CC)
spectra of rain rates: (a) CC specira -
between WRF forecasts and ASOS
rain gauges, (b) CC spectra between
WRF forecasts and NEXRAD radars,
and (¢) CC spectra between ASOS
rain gauges and NEXRAD radars.
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First, we compare the WRF forecasts with the ASOS rain gauge measurements.
At each of the 93 ASOS sites, each error spectrum is plotted in Fig. 3a. The dots depict
the averaged error spectrum. Obviously, for the frequencies lower than 1 ¢pd, the CC




varies between 0.3 and 0.5. However, there is essentially no correlation for frequencies
higher than 1 cpd. The CC spectra in Fig, 3b display the comparison between the WRF
forecasts and NEXRAD measurements, They are similar to those resulted from the
WRF-ASOS comparison. How do ASOS and NEXRAD date sets compare? The CC
spectra illustrated in Fig. 3¢ indicate almost evenly distributed CC across frequencies at a
. level of around 0.5. These results confirm the conclusion from the temporal specira that
the forecasts are more skillful at low frequencies than at-high frequencies. The error
spectra provide an additional quantitative measure in regard to temporal scales,

>

5. Discussion

The ‘idea of the error spectra can be expanded fo two dimensions to investigate
the statistical measures in the spatial space in terms of horizontal wavenumbers. For the
rainfall patterns during June 2003, two power-law scaling are found with a spectral break
at 20 km, and their exponents are -2/3 and -4/3 for the low and high wavenumbers,
- respectively (Hsu ef al., 2006b). The next step is to perform the spatial error-spectrum
analysis,

The generally low correlation coefficients (~ 0.5) between ASOS and NEXRAD
data in the average quantify the difficulty in comparing rainfall measurements.

It is well known that the point-to-point evaluation of model forecasts is difficult
for various reasons, particularly for rainfall verification, because of the infermitiency of
the rainfall events. Comparison of temperature and wind speed between model forecasts
and measurements would be interesting because they are much less intermittent.
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