Abstract
The concept of local shock strength and a quantitative measure index str of local shock strength are proposed, derived from the oblique shock relation and the monotonic relationship between total pressure loss ratio and normal Mach number. Utilizing the high density gradient characteristic of shock waves and the oblique shock relation, a post-processing algorithm for two-dimensional flow field data is developed. The objective of the post-processing algorithm is to obtain specific shock wave location coordinates and calculate the corresponding str from flow filed data under the calibration of the oblique shock relation. Validation of this post-processing algorithm is conducted using a standard model example that can be solved analytically. Combining the concept of local shock strength with the post-processing algorithm, a local shock strength quantitative mapping approach is established for the first time. This approach enables a quantitative measure and visualization of local shock strength at distinct locations, represented by color mapping on the shock structures. The approach can be applied to post-processing numerical simulation data of two-dimensional flows. Applications to the intersection of two left-running oblique shock waves (straight shock waves), the bow shock in front of a cylinder (curved shock wave), and Mach reflection (mixed straight and curved shock waves) demonstrate the accuracy, and effectiveness of the mapping approach in investigating diverse shock wave phenomena. The quantitative mapping approach of str may be a valuable tool in the design of supersonic/hypersonic vehicles and the exploration of shock wave evolution.
摘要
本研究基于斜激波关系式和总压损失与法向马赫数的单调关系提出了当地激波强度的概念及其定量测量指标str. 为了实现从流场数据中获得具体的激波位置坐标并计算出对应的当地激波强度, 本研究基于激波的高密度梯度特性并利用斜激波关系式, 发展了一种二维流场数据的后处理算法, 并利用可以解析求解的标模算例验证了该后处理算法的准确性. 结合当地激波强度的概念和流场数据后处理算法, 本研究开创了当地激波强度的定量映射方法, 实现了全流场激波不同位置处当地激波强度的定量测量和可视化, 并通过超声速双楔绕流(斜激波)、超声速圆柱绕流(弯曲激波)和马赫反射算例(斜激波与弯曲激波)验证了其有效性和准确性. 当地激波强度的定量映射方法研究对探索复杂波系激波强度演变机制具有学术价值和应用前景.
References
J. Aroesty, and J. D. Cole, Hypersonic similarity solutions for airfoils supporting exponential shock waves, AIAA J. 8, 308 (1970).
A. Wang, W. Zhao, and Z. L. Jiang, The criterion of the existence or inexistence of transverse shock wave at wedge supported oblique detonation wave, Acta Mech. Sin. 27, 611 (2011).
G. D. Waldman, W. G. Reinecke, and D. C. Glenn, Raindrop breakup in the shock layer of a high-speed vehicle, AIAA J. 10, 1200 (1972).
W. S. Huang, O. Onodera, and K. Takayama, Unsteady interaction of shock wave diffracting around a circular cylinder in air, Acta Mech. Sin. 7, 29599 (1991).
J. C. Tannehill, T. L. Holst, and J. V. Rakich, Numerical computation of two-dimensional viscous blunt body flows with an impinging shock, AIAA J. 14, 204 (1976).
Z. Jiang, C. Yan, and J. Yu, A simple a posteriori indicator for discontinuous Galerkin method on unstructured grids, Acta Mech. Sin. 39, 322296 (2023).
R. J. Balla, Mach 10 bow-shock unsteadiness modeled by linear combination of two mechanisms, AIAA J. 55, 4274 (2017).
F. De Vanna, F. Picano, E. Benini, and M. K. Quinn, Large-eddy simulations of the unsteady behavior of a hypersonic intake at Mach 5, AIAA J. 59, 3859 (2021).
I. M. Kalkhoran, and M. K. Smart, Aspects of shock wave-induced vortex breakdown, Prog. Aerospace Sci. 36, 63 (2000).
H. Pourhashem, I. M. Kalkhoran, and S. Kumar, Interaction of vortex with bow shock wave: Computational model, experimental validation, enhanced mixing, AIAA J. 56, 3071 (2018).
Y. Andreopoulos, J. H. Agui, and G. Briassulis, Shock wave — Turbulence interactions, Annu. Rev. Fluid Mech. 32, 309 (2000).
B. McManamen, D. A. Donzis, S. W. North, and R. D. W. Bowersox, Velocity and temperature fluctuations in a high-speed shock-turbulence interaction, J. Fluid Mech. 913, A10 (2020).
K. Sabnis, and H. Babinsky, A review of three-dimensional shock wave-boundary-layer interactions, Prog. Aerosp. Sci. 143, 100953 (2023).
D. V. Gaitonde, and M. C. Adler, Dynamics of three-dimensional shock-wave/boundary-layer interactions, Annu. Rev. Fluid Mech. 55, 291 (2023).
S. K. Karthick, Shock and shear layer interactions in a confined supersonic cavity flow, Phys. Fluids 33, 066102 (2021), arXiv: 2103.10361.
D. Rotman, Shock wave effects on a turbulent flow, Phys. Fluids A-Fluid Dyn. 3, 1792 (1991).
A. Guardone, C. Zamfirescu, and P. Colonna, Maximum intensity of rarefaction shock waves for dense gases, J. Fluid Mech. 642, 127 (2010).
H. W. Liepmann, and A. Roshko, Elements of Gasdynamics (John Wiley & Sons, Inc., Hoboken, 1957).
L. D. Landau, and E. M. Lifshitz, Course of theoretical physics, in: Fluid Mechanics (Pergamon Press, Oxford, 1987).
J. D. Anderson, Fundamentals of aerodynamics (McGraw-Hill, New York, 2006).
M. K. Smart, and I. M. Kalkhoran, Effect of shock strength on oblique shock-wave/vortex interaction, AIAA J. 33, 2137 (1995).
L. J. Souverein, P. Dupont, J. F. Debiève, J. P. Dussauge, B. W. van Oudheusden, and F. Scarano, Effect of interaction strength on unsteadiness in shock-wave-induced separations, AIAA J. 48, 1480 (2010).
J. H. Agui, G. Briassulis, and Y. Andreopoulos, Studies of interactions of a propagating shock wave with decaying grid turbulence: Velocity and vorticity fields, J. Fluid Mech. 524, 143 (2005).
S. Roy, U. Pathak, and K. Sinha, Variable turbulent Prandtl number model for shock/boundary-layer interaction, AIAA J. 56, 342 (2018).
S. Roy, and K. Sinha, in Variable turbulent Prandtl number model applied to hypersonic shock/boundary-layer interactions: Proceedings of 2018 Fluid Dynamics Conference on Turbulence Modeling: Applications, Atlanta, 2018.
H. Rathi, and K. Sinha, in Numerical detection of shock location and shock strength in unsteady flow computations: Proceedings of AIAA Aviation 2021 Forum on Supersonic and Hypersonic Flows II, 2021.
H. Rathi, and K. Sinha, in Study of shock boundary layer interaction using a modified k-ω model based on estimated shock strength: Proceedings of AIAA Aviation 2023 Forum on Supersonic and Hypersonic Flows, San Diego, 2023.
A. Shi, J. Chen, E. H. Dowell, and H. Wen, Approach to determine the most efficient supersonic Mach number, AIAA J. 58, 1402 (2020).
A. Shi, J. Chen, E. H. Dowell, H. Wen, X. Li, and T. Shen, Relativistic oblique shock: A geometric object, Astrophys. J. 893, 167 (2020).
H. C. Yee, N. D. Sandham, and M. J. Djomehri, Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. Comput. Phys. 150, 199 (1999).
A. Bhagatwala, and S. K. Lele, A modified artificial viscosity approach for compressible turbulence simulations, J. Comput. Phys. 228, 4965 (2009).
Y. Chen, and X. Deng, Nonlinear weights for shock capturing schemes with unconditionally optimal high order, J. Comput. Phys. 478, 111978 (2023).
A. S. Chamarthi, N. Hoffmann, and S. Frankel, A wave appropriate discontinuity sensor approach for compressible flows, Phys. Fluids 35, 066107 (2023).
T. R. Hendrickson, A. Kartha, and G. V. Candler, in An improved Ducros sensor for the simulation of compressible flows with shocks: Proceedings of 2018 Fluid Dynamics Conference on High-Speed Flows II, Atlanta, 2018.
J. Ou, and Z. Zhai, Effects of aspect ratio on shock-cylinder interaction, Acta Mech. Sin. 35, 61 (2019).
Q. Liu, W. Xie, Z. Luo, M. Sun, P. Cheng, X. Deng, and Y. Zhou, Flow structures and unsteadiness in hypersonic shock wave/turbulent boundary layer interaction subject to steady jet, Acta Mech. Sin. 39, 123202 (2023).
Y. Pan, J. Tan, J. Liang, W. Liu, and Z. Wang, Experimental investigation of combustion mechanisms of kerosene-fueled scramjet engines with double-cavity flameholders, Acta Mech. Sin. 27, 891 (2011).
C. Zhang, Q. Tang, and C. Lee, Hypersonic boundary-layer transition on a flared cone, Acta Mech. Sin. 29, 48 (2013).
S. P. Liou, A. Singh, S. Mehlig, D. Edwards, and R. Davis, in An image analysis based approach to shock identification in CFD: Proceedings of the 33rd Aerospace Sciences Meeting and Exhibit, Reno, 1995.
D. Lovely, and R. Haimes, in Shock detection from computational fluid dynamics results: Proceedings of the 14th Computational Fluid Dynamics Conference, Norfolk, 1999.
K. L. Ma, J. Van Rosendale, and W. Vermeer, in 3D shock wave visualization on unstructured grids: Proceedings of 1996 Symposium on Volume Visualization, San Francisco, 1996.
M. Kanamori, and K. Suzuki, Shock wave detection in two-dimensional flow based on the theory of characteristics from CFD data, J. Comput. Phys. 230, 3085 (2011).
M. Kanamori, and K. Suzuki, Three-dimensional shock wave detection based on the theory of characteristics, AIAA J. 51, 2126 (2013).
G. Li, K. Kontis, and Z. Fan, Automatic shock detection, extraction, and fitting in schlieren and shadowgraph visualization, AIAA J. 59, 2312(2021).
H. Akhlaghi, A. Daliri, and M. R. Soltani, Shock-wave-detection technique for high-speed rarefied-gas flows, AIAA J. 55, 3747 (2017).
A. D. Beck, J. Zeifang, A. Schwarz, and D. G. Flad, A neural network based shock detection and localization approach for discontinuous Galerkin methods, J. Comput. Phys. 423, 109824 (2020).
F. Chen, and R. Samtaney, Detection of magnetohydrodynamic waves by using convolutional neural networks, Phys. Fluids 34, 106105 (2022).
M. Lin, Z. Tian, S. Chang, K. Cui, and S. Dai, Three-dimensional shock topology detection method via tomographic reconstruction, Aerospace 10, 275 (2023).
B. Van Leer, Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection, J. Comput. Phys. 23, 276 (1977).
C. Huang, Y. Wang, R. Deiterding, D. Yu, and Z. Chen, Numerical studies on weak and strong ignition induced by reflected shock and boundary layer interaction, Acta Mech. Sin. 38, 121466 (2022).
Q. Liu, M. Shen, and Y. Ren, An efficient method for solving the mixed direct-inverse problem of the transonic rotational flow in plane cascades, Acta Mech. Sin. 5, 323 (1989).
X. Deng, and H. Zhang, Developing high-order weighted compact nonlinear schemes, J. Comput. Phys. 165, 22 (2000).
J. Sinclair, and X. Cui, A theoretical approximation of the shock standoff distance for supersonic flows around a circular cylinder, Phys. Fluids 29, 026102 (2017).
S. Mallikarjun, V. Casseau, W. G. Habashi, S. Gao, and A. Karchani, Direct simulation Monte Carlo methods for hypersonic flows with automatic mesh optimization, AIAA J. 61, 5 (2023).
Z. Qin, A. Shi, E. H. Dowell, Y. Pei, and E. Huang, Analytical model of strong Mach reflection, AIAA J. 60, 5187 (2022).
Y. Li, D. Zhang, and Y. Cao, Numerical simulation of Mach reflections, Acta Mech. Sin. 1, 131 (1985).
H. Ren, T. Jing, and J. Li, Mach reflection of a plane shock wave passing a mountain of 45° inclination, Acta Mech. Sin. 2, 8 (2021).
C. Shi, Y. You, X. Zheng, and C. Zhu, Analytical model for curved-shock Mach reflection, Phys. Fluids 35, 031702 (2023).
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 12372233), the Fund of NPU-Duke China Seed Program (Grant No. 119003067), and the “111 Project” of China (Grant No. B17037-106).
Author information
Authors and Affiliations
Contributions
Author contributions Jiashuo Li: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing–original draft, Writing–review & editing. Aiming Shi: Conceptualization, Data curation, Funding acquisition, Methodology, Project administration, Resources, Supervision, Validation, Writing–original draft, Writing–review & editing. Earl H. Dowell: Conceptualization, Methodology, Writing–original draft, Writing–review & editing.
Corresponding author
Ethics declarations
Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.
Rights and permissions
About this article
Cite this article
Li, J., Shi, A. & Dowell, E.H. Quantitative measure and visualization for local shock strength in two-dimensional flow. Acta Mech. Sin. 41, 324255 (2025). https://doi.org/10.1007/s10409-024-24255-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10409-024-24255-x