Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1988, Volume 31, Issue 1, Pages 193–207
DOI: https://doi.org/10.1070/IM1988v031n01ABEH001056
(Mi im1323)
 

This article is cited in 30 scientific papers (total in 30 papers)

The method of isomonodromy deformations and connection formulas for the second Painlevé transcendent

A. R. Its, A. A. Kapaev
References:
Abstract: A complete asymptotic description is given for the general real solution of the second Painlevé equation, $u_{xx}-xu+2u^3=0$, including explicit formulas connecting the asymptotics as $x\to\pm\infty$. The approach is based on the asymptotic solution of the direct problem of monodromy theory for a linear system associated with the Painlevé equation in the framework of the method of isomonodromy deformations. There is a brief exposition of the method of isomonodromy deformations itself, which is an analogue in the theory of nonlinear ordinary differential equations of the familiar inverse problem method.
Bibliography: 23 titles.
Received: 22.07.1985
Bibliographic databases:
UDC: 517.9
MSC: Primary 34E20; Secondary 34A20
Language: English
Original paper language: Russian
Citation: A. R. Its, A. A. Kapaev, “The method of isomonodromy deformations and connection formulas for the second Painlevé transcendent”, Math. USSR-Izv., 31:1 (1988), 193–207
Citation in format AMSBIB
\Bibitem{ItsKap87}
\by A.~R.~Its, A.~A.~Kapaev
\paper The~method of isomonodromy deformations and connection formulas for the second Painlev\'e transcendent
\jour Math. USSR-Izv.
\yr 1988
\vol 31
\issue 1
\pages 193--207
\mathnet{http://mi.mathnet.ru//eng/im1323}
\crossref{https://doi.org/10.1070/IM1988v031n01ABEH001056}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=914864}
\zmath{https://zbmath.org/?q=an:0681.34053}
Linking options:
  • https://www.mathnet.ru/eng/im1323
  • https://doi.org/10.1070/IM1988v031n01ABEH001056
  • https://www.mathnet.ru/eng/im/v51/i4/p878
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:797
    Russian version PDF:267
    English version PDF:28
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025


    pFad - Phonifier reborn

    Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

    Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


    Alternative Proxies:

    Alternative Proxy

    pFad Proxy

    pFad v3 Proxy

    pFad v4 Proxy