skip to main content
article
Free access

A Computational Procedure for Incomplete Gamma Functions

Published: 01 December 1979 Publication History
First page of PDF

References

[1]
ABRAMOWITZ, M., AND STEGUN, I.A., EDS. Handbook of Mathematical Functions. Nat. Bur. Standards Appl. Math. Series 55, U.S. Govt. Printing Office, 1964.
[2]
GAUTSCHI, W. Algorithm 542. Incomplete gamma functions. ACM Trans. Math. Software 5, 4 (Dec. 1979), 482-489.
[3]
GAUTSCHI, W. An evaluation procedure for incomplete gamma functions. MRC Tech. Summary Rep. 1717, Mathematics Res. Ctr., U. of Wisconsin, Madison, Feb. 1977.
[4]
GAUTSCHI, W Anomalous convergence of a continued fraction for ratios of Kummer functions. Math. Comp. 31 (1977), 994-999.
[5]
GAUTSCHI, W Zur Numerlk rekurrenter Relatlonen. Comptg. 9 (1972), 107-126. (English translation m Aerospace Res. Lab. Rep. ARL 73-0005, Wright Patterson AFB, Feb. 1973.)
[6]
KHAMIS, S H. Tables of the incomplete Gamma Functzon Ratto. Justus yon Lieblg Verlag, Darmstadt, 1965.
[7]
KOTANI, M., AMENIYA, A., ISHIGURO, E., AND KIMURA, T. Table of Molecular Integrals. Maruzen Co, Ltd., Tokyo, 1955
[8]
MILLER, J., GERHAUSEN, J.M., AND MATSEN, F.A. Quantum Chemistry Integrals and Tables U. of Texas Press, Austin, 1959.
[9]
PAGUROVA, V I. Tables of the Exponenttal Integral E,.(x) = ~ e-~Uu-'' du. (Translated from the Russian by D. G. Fry), Pergamon Press, New York, 1961.
[10]
PEARSON, K., Ed., Tables of the Incomplete DFunct~on Biometrika Office, U. College, Cambridge U. Press, Cambridge, 1934.
[11]
PERRO~, O. Die Lehre yon den Kettenbruchen, Vol. II, 3rd ed., B.G. Teubner, Stuttgart, 1957.
[12]
TEMME, N.M. The asymptotic expansion of the incomplete gamma functions. Rep. TW 165/77, Stichting Mathematisch Centrum, Amsterdam, 1977.
[13]
TRICOMI, F.G. Funzloni ipergeometnche confluenti. Edizioni Cremonese, Rome, 1954.
[14]
TRICOMI, F.G. Sulla funzlone gamma mcompleta. Ann. Mat. Pura Appl. (4) 31 (1950), 263-279.
[15]
WALL, H.S. Analytw Theory of Contmued Fractions Van Nostrand, New York, 1948. (Reprinted in 1967 by Chelsea Publ Co., Bronx, N.Y )
[16]
WRENCH, J.W., JR. Concermng two series for the gamma function. Math. Comp. 22 (1968), 617- 626.

Cited By

View all
  • (2024)Multidimensional Signal Space Non-Orthogonal Multiple Access With Imperfect SIC: A Novel SIC Reduction TechniqueIEEE Transactions on Vehicular Technology10.1109/TVT.2023.332107273:2(2374-2389)Online publication date: Feb-2024
  • (2024)Secrecy Performance Analysis of RIS Assisted Ambient Backscatter Communication NetworksIEEE Transactions on Green Communications and Networking10.1109/TGCN.2024.33656928:3(1222-1232)Online publication date: Sep-2024
  • (2024)An Approximation to the Heidler Function With an Analytical IntegralIEEE Transactions on Electromagnetic Compatibility10.1109/TEMC.2024.337264266:4(1153-1167)Online publication date: Aug-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

ACM Transactions on Mathematical Software  Volume 5, Issue 4
Dec. 1979
153 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/355853
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 December 1979
Published in TOMS Volume 5, Issue 4

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)168
  • Downloads (Last 6 weeks)33
Reflects downloads up to 07 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Multidimensional Signal Space Non-Orthogonal Multiple Access With Imperfect SIC: A Novel SIC Reduction TechniqueIEEE Transactions on Vehicular Technology10.1109/TVT.2023.332107273:2(2374-2389)Online publication date: Feb-2024
  • (2024)Secrecy Performance Analysis of RIS Assisted Ambient Backscatter Communication NetworksIEEE Transactions on Green Communications and Networking10.1109/TGCN.2024.33656928:3(1222-1232)Online publication date: Sep-2024
  • (2024)An Approximation to the Heidler Function With an Analytical IntegralIEEE Transactions on Electromagnetic Compatibility10.1109/TEMC.2024.337264266:4(1153-1167)Online publication date: Aug-2024
  • (2024)A Novel Multi-Carrier Quadrature NOMA With α – μ Fading Channel for Multi-User ScenarioIEEE Transactions on Communications10.1109/TCOMM.2023.333725572:3(1474-1486)Online publication date: Mar-2024
  • (2024)Enhancing Physical Layer Security With RIS Under Multi-Antenna Eavesdroppers and Spatially Correlated Channel UncertaintiesIEEE Transactions on Communications10.1109/TCOMM.2023.333391972:3(1532-1547)Online publication date: Mar-2024
  • (2023) Power Allocation Constraint and Error Rate Analysis for Multi-User PD-NOMA System Employing M –Ary PSK IEEE Communications Letters10.1109/LCOMM.2023.325385727:5(1452-1456)Online publication date: May-2023
  • (2023)Probabilistic Rare-Event Verification for Temporal Logic Robot Tasks2023 IEEE International Conference on Robotics and Automation (ICRA)10.1109/ICRA48891.2023.10161083(12409-12415)Online publication date: 29-May-2023
  • (2023)Enhancing Outage-Constrained Secure EE with RIS Under a Multi-Antenna EavesdropperGLOBECOM 2023 - 2023 IEEE Global Communications Conference10.1109/GLOBECOM54140.2023.10437018(01-06)Online publication date: 4-Dec-2023
  • (2023)The saturated Multiserver Job Queuing Model with two classes of jobs: Exact and approximate resultsPerformance Evaluation10.1016/j.peva.2023.102370162(102370)Online publication date: Nov-2023
  • (2022)Outage Analysis of NOMA-Enabled Backscatter Communications With Intelligent Reflecting SurfacesIEEE Internet of Things Journal10.1109/JIOT.2022.31504189:16(15390-15400)Online publication date: 15-Aug-2022
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy