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Abstract: We consider a linear operator ψr from the ring ΛQ of symmetric functions over Q to the polynomial

ring Q[n] defined by ψrmλ =
[∑l

i=1(λi)r

]
mλ(1n), where mλ is a monomial symmetric function, (λi)r denotes

the falling factorial, and mλ(1n) denotes mλ evaluated at x1 = · · · = xn = 1, xi = 0 for i > n. We obtain
formulas for many instances of ψrbλ, where bλ denotes one of the six standard bases for ΛQ. The formula for
ψ2sλ, where sλ is a Schur function, is equivalent to a formula of M. Thiel and N. Williams on the expected
square norm of the weight of an irreducible representation of the Lie algebra sl(n,C).

Keywords: Schur function; Symmetric function; Thiel-Williams formula
2020 Mathematics Subject Classification: 05E05

1. Introduction

The motivation for this paper is a formula [5, Thm. 1.1] of M. Thiel and N. Williams, namely, for a complex
simple Lie algebra g with an irreducible representation Vλ of highest weight λ, the expected squared norm of a
weight in Vλ is

E
µ∈Vλ

(〈µ, µ〉) :=
1

dimVλ

∑
µ∈Vλ

dim(Vλ(µ))〈µ, µ〉 =
1

h+ 1
〈λ, λ+ 2ρ〉, (1)

where dimVλ(µ) is the multiplicity of µ in Vλ, h is the Coxeter number of g, and ρ is the half-sum of the positive
roots. (The sum over µ ∈ Vλ has only finitely many nonzero terms.)

In type A, that is, g = sl(n,C), equation (1) can be stated in terms of symmetric functions in the variables
x1, . . . , xn. Moreover, this restated formula stabilizes as n → ∞, so we get a formula involving symmetric
functions in infinitely many variables.

To state this formula, we will use standard notation and terminology from the theory of symmetric functions
as found in [3, Ch. 7]. In particular, λ and µ now denote partitions (rather than weights). If λ is a partition of
d, then we write λ ` d, |λ| = d, or λ ∈ Par(d). We also write λ = 〈1m12m2 · · · dmd〉 if λ has mi = mi(λ) parts
equal to i, so

∑
imi = |λ|. The length `(λ) is the total number of parts, so `(λ) =

∑
mi. Let λ

′

i be the number

of parts of λ that are greater than or equal to i. The partition λ
′

= (λ
′

1, λ
′

2, . . . , λ
′

k) is called the conjugate

partition of λ. Thus λ
′

1 = `(λ) and λ1 = `(λ
′
).

Throughout this paper, P and Q respectively denote the sets of positive integers and rational numbers. Recall
that the algebra ΛQ(x) of symmetric functions has various bases that are indexed by the set Par of partitions,
including mλ = mλ(x) (monomial symmetric functions), pλ (power sum symmetric functions), eλ (elementary
symmetric functions), hλ (complete homogeneous symmetric functions), sλ (Schur functions), and foλ = ωmλ

(forgotten symmetric functions), where ω is the involution on ΛQ defined by ω(hλ) = eλ. For f(x) ∈ ΛQ(x), let

f(1n) = f(

n︷ ︸︸ ︷
1, . . . , 1, 0, 0, . . .).
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For fixed f , the function f(1n) is always a polynomial in n.
Let n, r ∈ P. For λ = (λ1, . . . , λ`) ∈ Par, define a Q-linear transformation

ψr : ΛQ → Q[n]

by

ψrmλ =

[
l∑
i=1

(λi)r

]
mλ(1n),

where (a)r = a(a− 1) · · · (a− r + 1) and l = `(λ).
We can now state (in an equivalent form) the result of Thiel and Williams [5] in the case g = sl(n,C),

namely, for λ ` d,

ψ2sλ =
2fλ/(2)

(d− 2)!
·
∏
u∈λ(n+ c(u))

n+ 1
, (2)

where fλ/(2) is the number of standard tableaux of the skew shape λ/(2) (interpreted to be 0 if (2) 6⊆ λ, i.e., if
λ = 〈1d〉), and where c(u) is the content of the square u of (the Young diagram of) λ.

The elegant formula (2) suggests that it might be interesting to apply ψ2 to other symmetric function bases
and to generalize from ψ2 to ψr.

In the next section (Section 2) we prove that for any symmetric function f ,

[zr]f(z + 1,

n−1︷ ︸︸ ︷
1, . . . , 1, 0, 0, . . .) =

1

n · r!
ψrf,

where [zr]g denotes the coefficient of zr in g (when expanded as a power series in z). This representation allows
us to compute ψrbλ for various bases of ΛQ. In particular, if λ ` d then

ψrsλ = Cλr ·
∏
u∈λ(n+ c(u))

(n+ 1)(n+ 2) · · · (n+ r − 1)
.

Here c(u) is the content of the square u of the (diagram of) λ and

Cλr =


r!

(d−r)!f
λ/(r) if λ1 ≥ r

0 otherwise,

where fλ/(r) is the number of standard Young tableaux of the skew shape λ/(r).

Remark 1.1. The actual formula of Thiel and Williams mentioned above dealt (essentially) with the operator

ψ̂2 : ΛQ → Q[n] defined by

ψ̂2mλ =

(
l∑
i=1

λ2i

)
mλ(1n).

Since for λ ` d we have

ψ̂2mλ = ψ2mλ +

(
l∑
i=1

λi

)
mλ(1n)

= ψ2mλ + dmλ(1n),

it follows that for any homogeneous symmetric function f of degree d,

ψ̂2f = ψ2f + df(1n).

More generally, we can define a linear transformation ψ̂r for r ≥ 2 by

ψ̂rmλ =

(
l∑
i=1

λri

)
mλ(1n).

Since in general (e.g., [2, (1.96)])

ar =

r∑
k=1

S(r, k)(a)k,

where S(r, k) is a Stirling number of the second kind, our formulas for ψrf yield formulas for ψ̂rf .
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2. A formula for ψrf

Let n ∈ P and z be an indeterminate. For any symmetric function f ∈ ΛQ write

ϑf = f(z + 1,

n−1︷ ︸︸ ︷
1, . . . , 1, 0, 0, . . .).

It is clear from the definition that ϑ(mλ) is a polynomial in z (with coefficients in Q[n]) of degree at most λ1.
Hence ϑ is an algebra homomorphism ΛQ → Q[n, z]. For instance,

ϑs21 = (n− 1)z2 + (n− 1)(n+ 1)z +
1

3
(n− 1)n(n+ 1).

Theorem 2.1. For any r ∈ P and f ∈ ΛQ, we have

[zr]ϑf =
1

n · r!
ψrf.

Proof. By linearity it suffices to show that the theorem is true for f = mλ. Let λ = (λ1, λ2, . . . , λl) =
〈1m12m2 · · · dmd〉 ` d. Set

bλ(n) :=

(
n− 1

l

)
·
(

l

m1,m2, . . . ,md

)
.

Then we have

ϑmλ =

[
d∑
i=1

(z + 1)i ·
(
n− 1

l − 1

)
·
(

l − 1

m1, . . . ,mi−1,mi − 1,mi+1, . . . ,md

)]
+ bλ(n)

=

[
d∑
i=1

mi(z + 1)i ·
(
n− 1

l − 1

)
·
(

l − 1

m1,m2, . . . ,md

)]
+ bλ(n)

=

[
l∑
i=1

(z + 1)λi

]
·
(
n− 1

l − 1

)
·
(

l − 1

m1,m2, . . . ,md

)
+ bλ(n)

=

[
l∑
i=1

λi∑
r=0

(
λi
r

)
zr

]
· 1

n

(
n

l

)(
l

m1,m2, . . . ,md

)
+ bλ(n)

=
1

n

(
n

l

)(
l

m1,m2, . . . ,md

)
·

[
λ1∑
r=0

1

r!

(
l∑
i=0

(λi)r

)
zr

]
+ bλ(n)

=
1

n
mλ(1n) ·

[
λ1∑
r=0

1

r!

(
l∑
i=0

(λi)r

)
zr

]
+ bλ(n),

so the proof follows.

We can also prove Theorem 2.1 by applying ϑ (acting on x variables only, so y variables are regarded as
scalars) to both sides of the following identity

∑
λ

mλ(x)hλ(y) =
∏
i,j

1

1− xiyj
= exp

∑
i≥1

1

i
pi(x)pi(y)


to get

∑
λ

ϑmλ(x) · hλ(y) = exp

∑
i≥1

1

i
ϑpi(x) · pi(y)



= exp

∑
i≥1

1

i

[
(n− 1) + (z + 1)i

]
pi(y)


ECA 3:3 (2023) Article #S2R24 3
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=

exp

∑
i≥1

1

i
pi(y)

n−1 ·
exp

∑
i≥1

1

i
(z + 1)ipi(y)



=

[ ∞∑
k=0

hk(y)

]n−1
·

 ∞∑
j=0

(z + 1)jhj(y)

 .
Then we can complete the proof by comparing the coefficient of hλ(y); we omit the details.

3. Schur functions

Theorem 3.1. For λ ` d and r ∈ P, we have

ψrsλ = Cλr ·
∏
u∈λ(n+ c(u))

(n+ 1)(n+ 2) · · · (n+ r − 1)

where

Cλr =


r!

(d−r)!f
λ/(r), if λ1 ≥ r,

0, otherwise.

Proof. Firstly, we claim that

sλ(x1 + 1, x2 + 1, . . . , xn + 1) =
∑
µ⊆λ

fλ/µ

|λ/µ|

 ∏
u∈λ/µ

(n+ c(u))

 sµ(x1, x2, . . . , xn). (3)

Indeed, using standard notation from [3, §7.15] we have

sλ(x1 + 1, . . . , xn + 1) =
aλ+δ(x1 + 1, . . . , xn + 1)

aδ(x1 + 1, . . . , xn + 1)

=
aλ+δ(x1 + 1, . . . , xn + 1)

aδ(x1, . . . , xn)
.

We can expand the entries of aλ+δ(x1 + 1, . . . , xn + 1) and use the multilinearity of the determinant to get
(see [1, Example I.3.10, p. 47])

sλ(x1 + 1, . . . , xn + 1) =
∑
µ⊆λ

dλµsµ,

where

dλµ = det

((
λi + n− i)
µj + n− j

))
1≤i,j≤n

.

We can factor out factorials from the numerators of the row entries and denominators of the column entries
of the above determinant. These factorials altogether yield

∏
u∈λ/µ(n + c(u)). What remains is exactly the

determinant for fλ/µ/|λ/µ|! given by Corollary 7.16.3 in [3]. This completes the proof of equation (3). Set
x1 = z and x2 = x3 = · · · = xn = 0 in (3). Then we have

ϑsλ =
∑
µ⊆λ

fλ/µ

|λ/µ|!

 ∏
u∈λ/µ

(n+ c(u))

 sµ(z, 0, 0, · · · , 0).

Note that

sµ(z, 0, 0, · · · , 0) =

z
r if µ = (r),

0 otherwise.

Therefore we have

ϑsλ =

λ1∑
r=0

fλ/(r)

(d− r)!

 ∏
u∈λ/(r)

(n+ c(u))

 zr

ECA 3:3 (2023) Article #S2R24 4
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=

λ1∑
r=0

fλ/(r)

(d− r)!
·

∏
u∈λ(n+ c(u))

n(n+ 1) · · · (n+ r − 1)
zr.

Then it follows from Theorem 2.1 that, for any 1 ≤ r ≤ λ1,

ψrsλ = n · r! · [zr](ϑsλ)

=
r!

(d− r)!
fλ/(r) ·

∏
u∈λ(n+ c(u))

(n+ 1)(n+ 2) · · · (n+ r − 1)
.

4. Formulas for ψ2(pλ), ψ2(eλ) and ψ2(hλ)

For any f ∈ ΛQ, by Theorem 2.1 and by the definition of ϑ, we have

ϑf = f(1n) +
1

n

∑
r≥1

ψrf

r!
zr. (4)

This implies that ϑf can be regarded as the generating function for ψrf . Then it is natural to consider ψrbλ
for other bases {bλ}. We shall show that, for general r, ψreλ also has a nice formula that can be written as the
product of linear factors. Although for general r, ψrpλ, ψrhλ and ψrfoλ do not have such nice formulas, the
case for r = 2 turns out to be simple.

In this section, we will exploit the relation (4) to get formulas for ψreλ, ψ2pλ and ψ2hλ. For the forgotten
symmetric function foλ, this method seems to be not very effective. We will use another tool in the next section
to derive the formula for ψ2foλ.

Theorem 4.1. For λ = (λ1, λ2, . . . , λl) ` d, we have

(1) ψreλ = C̃λr · nl−r+1 ·
∏
i≥2(n− i+ 1)λ

′
i , where

C̃λr =


r!∏l
i=1 λi!

( ∑
i1<i2<···<ir

λi1λi2 · · ·λir

)
if r ≤ l,

0 otherwise.

(2) ψ2pλ = nl−1 ·
[(∑l

i=1 λ
2
i − d

)
n+ d2 −

∑l
i=1 λ

2
i

]
.

(3) ψ2hλ =
[2(

∑l
i=1 λ

2
i )−2d+2

∑
i<j λiλj]·n+2

∑
i<j λiλj

n(n+1)
∏l
i=1 λi!

·
∏
i≥1(n+ i− 1)λ

′
i .

Proof. (1) By equation (4), we have

ψreλ = r!n · [zr](ϑeλ)

= r!n · [zr] (ϑeλ1 · ϑeλ2 · · ·ϑeλl)

= r!n · [zr] (ϑs1λ1 · ϑs1λ2 · · ·ϑs1λl ) .

By the proof of Theorem 3.1, we get

ϑs1k =
(n− 1)(n− 2) · · · (n− k + 1)

k!
(n+ kz).

Then we obtain that

ψreλ = r!n · [zr]

[
l∏
i=1

(n− 1)(n− 2) · · · (n− λi + 1)

λi!
(n+ λiz)

]

= r!n ·
∏
i≥2(n− i+ 1)λ

′
i∏l

i=1 λi!
· [zr]

[
l∏
i=1

(n+ λiz)

]

ECA 3:3 (2023) Article #S2R24 5
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=


r!n ·

∏
i≥2(n− i+ 1)λ

′
i∏l

i=1 λi!

( ∑
i1<i2<···<ir

λi1λi2 · · ·λir

)
· nl−r, if r ≤ l

0, otherwise

= C̃λr · nl−r+1 ·
∏
i≥2

(n− i+ 1)λ
′
i

where

C̃λr =


r!∏l
i=1 λi!

( ∑
i1<i2<···<ir

λi1λi2 · · ·λir

)
if r ≤ l,

0 otherwise.

(2) Again, by equation (4), we have

ψ2pλ = 2n · [z2](ϑpλ)

= 2n · [z2] (ϑpλ1
· ϑpλ2

· · ·ϑpλl)

= 2n · [z2]

{
l∏
i=1

[
n− 1 + (z + 1)λi

]}

= 2n ·

nl−2
∑
i<j

λiλj

+ nl−1

(
l∑
i=1

(
λi
2

))

= nl−1 ·

2
∑
i<j

λiλj + n

(
l∑
i=1

λ2i − d

)
= nl−1 ·

[(
l∑
i=1

λ2i − d

)
n+ d2 −

l∑
i=1

λ2i

]
.

This completes the proof of the formula for ψ2pλ.

(3) The formula of ψ2hλ can be proved similarly, by using the fact that hλ is a multiplicative basis of ΛQ and
by Theorem 2.1. We omit the details here.

Remark 4.1. For general r, the formulas of ψrpλ and ψrhλ do not necessarily have such nice decompositions.
For instance,

ψ3h321 = n(n+ 1)(19n2 + 35n+ 6)

and

ψ3p3211 = 6n2(n2 + 17n+ 17).

5. Forgotten symmetric functions

To prove the formula for ψ2foλ, we need the following reformulation of the Q-linear transformation ψ2 in terms
of a differential operator.

Since we have

∂2

∂x2i
(xα1

1 xα2
2 · · · ) = αi(αi − 1)xα1

1 · · ·x
αi−2
i · · · ,

then it is easy to see that [(
n∑
i=1

∂2

∂x2i

)
mλ

]
x1=···=xn=1
xn+1=···=0

=

(
l∑
i=1

λi(λi − 1)

)
mλ(1n). (5)

ECA 3:3 (2023) Article #S2R24 6
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For simplicity of notation we define a Q−linear transformation D2
n : ΛQ(x)→ Q[n] by

D2
nf =

[(
n∑
i=1

∂2

∂x2i

)
f

]
x1=···=xn=1
xn+1=···=0

.

By equation (5), we have D2
nf = ψ2f for any f ∈ ΛQ.

Theorem 5.1. For λ = (λ1, λ2, . . . , λl) ` d, we have

ψ2foλ =
ελ
∏l
i=1(n+ i− 1)

(n+ 1)
∏
mi(λ)!

[(
l∑
i=1

λ2i − d

)
n+ 2d2 − d−

l∑
i=1

λ2i

]
,

where ελ = (−1)|λ|+`(λ).

Proof. By regarding variables y as scalars and applying ω to the identity

H(x, y) =

∞∏
i,j=1

(1 + xiyj) =
∑
λ

mλ(x)eλ(y),

we then obtain

C(x, y) =
∏
i,j

1

1− xiyj
=
∑
λ

foλ(x) · eλ(y). (6)

By applying D2
n to the left hand side of (6) and ψ2 to the right hand side, we deduce that

nC(1n, y)

( ∞∑
m=1

pm(y)

)2

+

∞∑
m=1

(m− 1)pm(y)

 =
∑
λ

ψ2foλ · eλ(y).

Then it follows that ψ2foλ is the coefficient of eλ(y) in[
n
∑
µ

foµ(1n) · eµ(y)

]
·

( ∞∑
m=1

pm(y)

)2

+

∞∑
m=1

(m− 1)pm(y)

 .
By Newton’s identities, we have

pm(y) =
∑

(r1,r2,...,rm)∈Nm
r1+2r2+···+mrm=m

(−1)m
m(r1 + r2 + · · ·+ rm − 1)!

r1! · · · rm!

m∏
i=1

(−ei(y))ri

=
∑
ν`m

(−1)|ν|+`(ν)
|ν|(`(ν)− 1)!∏

mi(ν)!
eν(y)

=
∑
ν`m

εν |ν|
(`(ν)− 1)!∏

mi(ν)!
eν(y)

where εν = (−1)|ν|+`(ν). Note that for a partition µ ∈ Par, we have

foµ(1n) = (−1)|µ|
(
−n
`(µ)

)(
`(µ)

m1(µ),m2(µ), . . .

)

=
εµ(n+ `(µ)− 1)!

(
∏
mi(µ)!)(n− 1)!

.

Write Par∗ for Par\∅, the set of all partitions excluding the partition ∅ of 0. We then deduce that for any λ ` d
with `(λ) ≥ 2,

ψ2foλ

= n
∑

(µ,ν,ρ)∈Par×Par∗×Par∗,
µ∪ν∪ρ=λ as multisets

εµ(n+ `(µ)− 1)! εν |ν|(`(ν)− 1)! ερ|ρ|(`(ρ)− 1)!

(
∏
mi(µ)!)(n− 1)! (

∏
mi(ν)!)(

∏
mi(ρ)!)

ECA 3:3 (2023) Article #S2R24 7
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+ n
∑

(µ,ν)∈Par×Par∗,
µ∪ν=λ as multisets

εµ(n+ `(µ)− 1)! εν |ν|(|ν| − 1)(`(ν)− 1)!

(
∏
mi(µ)!)(n− 1)! (

∏
mi(ν)!)

=
nελ∏
mi(λ)!

∑
(µ,ν,ρ)

(n)`(µ)(1)`(ν)−1(1)`(ρ)−1 |ν||ρ|
∏
mi(λ)!∏

i(mi(µ)!mi(ν)!mi(ρ)!)
(7)

+
nελ∏
mi(λ)!

∑
(µ,ν)

(n)`(µ)(1)`(ν)−1 |ν|(|ν| − 1)
∏
mi(λ)!∏

i(mi(µ)!mi(ν)!)
, (8)

where (x)k denotes the rising factorial. Now we simplify the summands (7) and (8) respectively. Note that the
summand (7) is equal to

nελ∏
mi(λ)!

∑
(l1,l2,l3)

l1≥0,l2,l3≥1
l1+l2+l3=`(λ)

(n)l1(1)l2−1(1)l3−1
∑

(µ,ν,ρ)
`(µ)=l1
`(ν)=l2
`(ρ)=l3
µ∪ν∪ρ=λ

|ν||ρ|
∏
mi(λ)!∏

i(mi(µ)!mi(ν)!mi(ρ)!)
.

Considering the inner sum of the above equation, we have

∑
(µ,ν,ρ)
`(µ)=l1
`(ν)=l2
`(ρ)=l3
µ∪ν∪ρ=λ

|ν||ρ|
∏
mi(λ)!∏

i(mi(µ)!mi(ν)!mi(ρ)!)
=

∑
(S,T )

S,T⊆[l],S∩T=∅
|S|=l2,|T |=l3

(∑
i∈S

λi

)∑
j∈T

λj



=
∑
i 6=j

λiλj ·
(

l − 2

l2 − 1, l3 − 1, l1

)

= 2

∑
i<j

λiλj

( l − 2

l2 − 1, l3 − 1, l1

)
,

since for each pair (i, j) with i 6= j, there are exactly
(

l−2
l2−1,l3−1,l1

)
pairs (S, T ) such that i ∈ S and j ∈ T .

Therefore the summand (7) can be simplified to be

2nελ∏
mi(λ)!

(∑
i<j

λiλj

) ∑
(l1,l2,l3)

l1≥0,l2,l3≥1
l1+l2+l3=`(λ)

(n)l1(1)l2−1(1)l3−1

(
l − 2

l2 − 1, l3 − 1, l1

)

=
2nελ∏
mi(λ)!

(∑
i<j

λiλj

)
(n+ 2)l−2,

where we use the fact that rising factorials are Sheffer sequences of binomial type, namely, we use the following
relation

(a+ b+ c)n =
∑

(i,j,k)
i+j+k=n

(
n

i, j, k

)
(a)i(b)j(c)k.

Similarly, the summand (8) can be represented as

nελ∏
mi(λ)!

∑
(l1,l2)

l1≥0,l2≥1
l1+l2=l

(n)l1(1)l2−1
∑
(µ,ν)
`(µ)=l1
`(ν)=l2
µ∪ν=λ

∏
mi(λ)!|ν|(|ν| − 1)∏
i(mi(µ)!mi(ν)!)

.

And the inner sum of the above equation can be simplified as follows.

∑
S⊆[l]
|S|=l2

(∑
i∈S

λi

)∑
j∈S

λj − 1


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=

l∑
i=1

λ2i

(
l − 1

l2 − 1

)
+ 2

∑
i<j

λiλj

(
l − 2

l2 − 2

)
−

l∑
i=1

λi

(
l − 1

l2 − 1

)
.

Therefore, we can simplify the summand (8) as follows:

nελ∏
mi(λ)!


(

l∑
i=1

λ2i − d

)
(n+ 1)l−1 + 2

∑
i<j

λiλj
∑

l1≥0,l2≥1
l1+l2=l

(n)l1(1)l2−1
(
l − 2

l2 − 2

)

=
nελ∏
mi(λ)!


(

l∑
i=1

λ2i − d

)
(n+ 1)l−1 + 2

∑
i<j

λiλj
∑

l1≥0,l2≥2
l1+l2=l

(n)l1(2)l2−2
(
l − 2

l2 − 2

)

=
nελ∏
mi(λ)!

( l∑
i=1

λ2i − d

)
(n+ 1)l−1 + 2

∑
i<j

λiλj(n+ 2)l−2


=

nελ∏
mi(λ)!

(n+ 2)l−2

[(
l∑
i=1

λ2i − d

)
n+ d2 − d

]
.

Hence, for λ ` d with `(λ) ≥ 2, we have

ψ2foλ

=
nελ∏
mi(λ)!

(n+ 2)l−2

( l∑
i=1

λ2i − d

)
n+ d2 − d+ 2

∑
i<j

λiλj


=

nελ∏
mi(λ)!

(n+ 2)l−2

[(
l∑
i=1

λ2i − d

)
n+ 2d2 − d−

l∑
i=1

λ2i

]

=
ελ∏
mi(λ)!

·
∏l
i=1(n+ i− 1)

n+ 1

[(
l∑
i=1

λ2i − d

)
n+ 2d2 − d−

l∑
i=1

λ2i

]
.

When `(λ) = 1, i.e., λ = (d), it is easy to show that the above formula for ψ2foλ still holds.

Remark 5.1. We can also use the differential operator D2
n to deduce formulas for ψ2pλ, ψ2eλ and ψ2hλ. The

computation will be simpler than the case for foλ; we leave the proof to the reader.

6. Final remarks

Based on Theorem 2.1 and the operator D2
n, we derive nice formulas for ψ2(bλ) when bλ ∈ {sλ, pλ, eλ, hλ, foλ}. It

would be of interest if some nice formulas can still be obtained when applying ψ2 to other symmetric functions.

We will conclude this paper with a nice formula for ψr(G
(a,b,c)
k ), where G

(a,b,c)
k denotes a generalization of the

(r, k)-parking symmetric functions introduced by Stanley and Wang [4].

Theorem 6.1. Let a, b, r, k be positive integers, and let c be an indeterminate. Let

H(t) =
∑
n≥0

hnt
n =

1

(1− x1t)(1− x2t) · · ·

F
(a,b)
k =

b

ak + b
[tk](H(t))ak+b

and

G
(a,b,c)
k = [yk]

 ∞∑
j=0

F
(a,b)
j yj

c

.

Then we have

ψr(G
(a,b,c)
k ) = (r − 1)!bcn

(
ak + bc+ r − 1

r − 1

)(
(ak + bc)n+ k − 1

k − r

)
. (9)
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Proof. It suffices to prove the theorem for positive integer c, since both sides of equation (9) are polynomials

in c. Now let c be an positive integer, by the relation in [4, Theorem 3.1], we deduce that G
(a,b,c)
k = F

(a,bc)
k . So

we only need to verify that

ψr(F
(a,b)
k ) = (r − 1)!bn

(
ak + b+ r − 1

r − 1

)(
(ak + b)n+ k − 1

k − r

)
. (10)

The remainder of the proof is just routine computation as follows.

ψr(F
(a,b)
k ) =

b

ak + b
[tk]ψr(H(t))ak+b

=
r!bn

ak + b
[tkzr]ϑ(H(t))ak+b

=
r!bn

ak + b
[tkzr]

1

(1− (z + 1)t)ak+b(1− t)(ak+b)(n−1)

=
r!bn

ak + b

k−r∑
m=0

(
−(ak + b)(n− 1)

m

)
(−1)m

(
−(ak + b)

k −m

)
(−1)k−m

(
k −m
r

)

=
r!bn

ak + b

k−r∑
m=0

(
−(ak + b)(n− 1)

m

)
(−1)m

(
ak + b+ k −m− 1)

k −m− r

)(
ak + b+ r − 1

r

)

=

(
ak + b+ r − 1

r

)
r!bn

ak + b

k−r∑
m=0

(
−(ak + b)(n− 1)

m

)
(−1)m

(
−(ak + b)− r
k −m− r

)
(−1)k−m−r

=

(
ak + b+ r − 1

r

)
r!bn

ak + b
(−1)k−r

(
−(ak + b)(n− 1)− (ak + b+ r)

k − r

)

=
r!bn

ak + b

(
ak + b+ r − 1

r

)(
(ak + b)n+ k − 1

k − r

)

= (r − 1)!bn

(
ak + b+ r − 1

r − 1

)(
(ak + b)n+ k − 1

k − r

)
.

Acknowledgement

The authors would like to thank the referee for his/her helpful suggestions. This work was supported in part
by the National Natural Science Foundation of China (Grant Nos. 12071383, 12271222) and Scientific Research
Foundation of Jiangsu Normal University (Grant Nos. 21XFRS019).

References

[1] I. G. Macdonald, Symmetric Functions and Hall Polynomials, second ed., Oxford University Press, Oxford,
1995.

[2] R. P. Stanley, Enumerative Combinatorics, Volume I, second ed., Cambridge University Press, New
York/Cambridge, 2012.

[3] R. P. Stanley, Enumerative Combinatorics, Volume II, Cambridge University Press, New York/Cambridge,
1999.

[4] R. P. Stanley and Y. Wang, Some aspects of (r, k)-parking functions, J. Combin. Theory Ser. A 159 (2018),
54–78.

[5] M. Thiel and N. Williams, Strange expectations and the Winnie-the-Pooh problem, J. Combin. Theory Ser.
A 176 (2020), 105298.

ECA 3:3 (2023) Article #S2R24 10


