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Introduction 
 
In 1939, Econometrica published an English translation of Konüs (1924), due to the efforts of Henry 

Schultz who also provided a discussion on that paper in the same issue of the journal (Schultz (1939)). In a 

nutshell, the famous paper of Konüs (1924) introduced the concept of a true cost of living index, 

𝐶(𝑢, 𝑝&)/𝐶(𝑢, 𝑝)), as a ratio of expenditure or cost functions where the consumer’s utility level 𝑢 is held 

constant in the numerator and denominator of the index but the current period price vector 𝑝& appears in 

the numerator and the base period price vector 𝑝) appears in the denominator of the ratio. Eventually, this 

article of Konüs (1924 [1939]) became a classic and fundamental work on the theory of the cost of living 

index, and on index numbers in general, inspiring many other works. Realizing the importance of his paper, 

in a footnote of the paper, the Editor noted: 

“We are very glad to present in full this excellent work which so far has been known to most 

econometricians only through quotations by Bortkiewicz. On closer examination the paper will be 

found to contain many things which later have been discovered independently by others.” 

(emphasis added) 

We believe there is a very similar situation with another important paper—“On the Problem of the 

Purchasing Power of Money”—which  A. A. Konüs wrote together with S. S. Byushgens, published (in 

Russian) by the same Conjuncture Institute.  In fact, in the first footnote to his 1924 paper, Konüs notes 

(apparently referring to what became his later work with Byushgens): 

“This article is an extract from a work as yet incomplete, on the establishment of the form of the 

functional dependency between consumption and prices. During this investigation, considerable 

aid was derived by me from the advice and suggestions of Professor S. S. Byushgens.” 

 
While the work of Konüs and Byushgens (1926) is cited in a number of theoretical works on index 

numbers1, very few scholars have had an opportunity to actually read it, even though this paper has 

pioneered several fundamental results in economics, such as duality theory, the theory of exact index 

numbers, systems of inverse demand functions and the Cobb-Douglas price index to mention a few. This 

is because, despite these breakthroughs, somehow it appears that Konüs and Byushgens (1926) has never 

been published in English (and perhaps any other language). Thus, we offer a translation of this important 

paper, complementing it with our commentary, with clarifying footnotes and an extensive appendix.   

 Before we proceed, here is a brief summary of some of the important concepts that Konüs and 

Byushgens (1926) introduced in their paper: 

                                                
1 See Diewert (1976) (1993; 47-48) (2020) and Diewert and Feenstra (2019) (2022)). Schultz (1939; 8) and Afriat 
(1972; 68) cite the work of Byushgens (1925) who provided a key proof in the joint work of Konüs and Byushgens. 
Also see Barnett et al. (1992) for a related discussion in a wider context. 
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• They introduced duality theory into economics; i.e., they noted that preferences could be equally well 

represented by a (linearly homogeneous) direct utility function, 𝑢 = 𝑓(𝑞) where 𝑢 is the utility obtained 

by a consumer who consumes the vector of commodities 𝑞, or by a dual price level function, 𝑐(𝑝), 

where 𝑝 is the price vector facing the consumer and 𝑐(𝑝) is the minimum cost of attaining the utility 

level 1 when facing the prices 𝑝.2 This discovery precedes the seminal works of Shephard (1953) and 

Hicks (1946), who are usually credited for the origin of these ideas. 

• They introduced the concept that preferences could be estimated via a system of direct demand 

functions, where the quantity demanded is a (vector) function of the prices the consumer faces and the 

total expenditure on goods and services. Alternatively, preferences could be estimated using a system 

of inverse demand functions where prices are a function of quantities consumed and the level of total 

expenditure on the goods and services.  

• They related different functional forms for the utility function or the price level function to practical 

indexes that could be used by statistical agencies. In other words, they pioneered the theory of exact 

index numbers.3 In particular: 

o They derived the index number formula that corresponds to what later was named as the Cobb-

Douglas utility function (due to the seminal work of Cobb-Douglas (1928) in production 

context).  

o They derived some of the utility and unit cost functions that are exact for the Fisher (1922) ideal 

index, i.e., they provided a theoretical justification based on the economic approach to index 

number theory for the Fisher ideal index. 

 
However, the paper is not an easy read. Thus, we have added a large number of footnotes to our translation 

that translates the notation and terminology used by Konüs and Byushgens into the more familiar notation 

and concepts used in microeconomic theory today. Some of the derivations made by the authors are difficult 

to follow and to aid the reader, we have added some extra explanations for some of their results at the end 

of the paper in the Commentary section. 

 
Some Brief Historical Remarks 
 
Before delving into the paper, it seems worth also clarifying some interesting facts about the organization 

Konüs worked at, which published both Konüs (1924) and Konüs and Byushgens (1926), the Conjuncture 

Institute. It was founded in 1920 in Moscow by Nikolay D. Kondratiev, a charismatic and quite liberal 

                                                
2 The authors assumed that the utility function was linearly homogeneous.  
3 Contributors to the theory of exact index numbers include Frisch (1936), (who reviewed the early work of others on 
this topic), Samuelson (1947; 155), Pollak (1971), Afriat (1972), Samuelson and Swamy (1974) and Diewert (1976). 
For materials on the early history of price index theory, see Barnett et al. (1992), Diewert (1993) and Balk (2008).  
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economist for a non-liberal country, which at that time was in the midst of a civil war (1917-1923) prompted 

by the communist revolution of 1917. The purpose of the institute was to collect and analyse data on the 

Russian economy. Initially, there was a particular interest in business cycles, as well as price indexes.4  

 Later on, the members of the institute (including Kondratiev, Konüs and Slutsky) published 

important papers that became seminal in economics and econometrics. In particular, Kondratiev became 

famous for ‘Kondratiev waves’ and early business cycle theory in macroeconomics. Eugen Slutsky (also 

referred to as Slutzky), who wrote his seminal work in consumer theory (introducing what later was named 

the Slutsky equation and the Slutsky effect) before joining the Institute, later also became famous for his 

fundamental contributions to asymptotic statistics and econometrics while working at the Institute.5   

 As mentioned above, Konüs became famous for his work in index numbers, mainly due to Konüs 

(1924 [1939]).  Interestingly, Wassily Leontief mentioned Konüs among the few most prominent Soviet 

economists, also calling him “the last surviving mathematical economist of the pre-revolutionary 

generation.”6 (In hindsight, it appears he was probably the longest lived prominent Soviet economist: 1895-

1990). Meanwhile, Sergei Sergeevich Byushgens (also translated as Buscheguennce and Byušgens, 1882–

1963) was a theoretical mathematician (Ph.D. from Lomonosov Moscow State University), specializing in 

general geometry, differential geometry and fluid mechanics. The only papers in economics we are aware 

of is the one with Konüs and his solo article, Buscheguennce (1925), published in French.  The results from 

the latter paper were used to derive some of the results in the former paper and were praised by Afriat 

(1987) (also see Schultz (1939; 8-9)). 

 It is also worth noting that, while quite natural for western economic thought, the line of thinking 

from the papers of Konüs (as well as others at the Conjuncture Institute) were original and novel in general 

and, in some sense, quite unexpected and perhaps even dangerous for a ‘Soviet economist’ those days. This 

emission of the rays of light of western economic thought, however, did not go on for long: the Conjuncture 

Institute was apparently closed in 1928 and many of its members (as also many people across all the 

republics of USSR) had very difficult times to come with the ‘Great Purge’ (when Kondtratiev was 

executed), WWII, the famine in Ukraine and other republics of USSR, etc.7 

Our translation of this fundamental paper by Konüs and Byushgens follows.  

                                                
4 See Kondratieff (1925) who explained the initial purpose of the Institute.  
5 E.g., see Slutzky, E. (1927) The Summation of Random Causes as a Source of Cyclical Processes. Problems of 
Economic Conditions, Ed. by The Conjuncture Institute, (Moscow) Vol. 3 (1); translated and published in English in 
Econometrica, Vol. 5 (2) April 1937, pp. 105-146. 
6 Leontief, W. (1960). The Decline and Rise of Soviet Economic Science. Foreign Affairs, 38(2), 261–272.  
7 See Klein (1999). She reports what happened to the Institute as follows: “The Conjuncture Institute was closed in 
1928. Kondratiev was denounced that year, imprisoned in 1930, and executed in 1938. After the closure of the 
Institute, Slutsky switched to modelling solar activity” (Klein (1999; 137-138). Konüs, after a short period at the 
Central Laboratory of Kirov’s Plant in Chelyabinsk, eventually returned to Moscow to work at various research 
institutes (https://bigenc.ru/economics/text/2094690). 
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On the Problem of the Purchasing Power of Money8 

A.A. Konüs and S.S. Byushgens 

 

The current paper provides a mathematical treatment of the purchasing power of money. The treatment 

follows from two assumptions: 1) the purchasing power of money is a quantifiable variable and 2) the 

purchasing power of money depends on the quantities of traded goods and the overall value of money that 

is paid for these goods, i.e., the purchasing power of money is a (mathematical) function of these variables. 

These assumptions form the basis for a quantitative theory of money. If one adds to these assumptions, the 

hypothesis that ‘the purchasing power of money does not change if the sum of infinitesimal changes of the 

quantities of goods, multiplied by prices, equals the increment of quantities of money, paid for all goods’, 

then a series of conclusions follow from the above assumptions.  

 The more important conclusions from the paper are the following: 

a) If the functional form for the purchasing power of money is known, then the price for each good is 

determined as a function of the quantities of purchased goods and the total amount of money spent on 

these goods. 

b) The purchasing power of money can also be considered as a function of the prices of the goods. 

c) At given prices and given the total amount of money spent on goods, quantities of traded goods can be 

determined such that the resulting purchasing power of money achieves its maximum value. 

 
If we make the assumption that the purchasing power of money is a function of the quantities of goods that 

are traded or purchased and of the quantity of money, and at the same time, the purchasing power of money 

can also be represented as a function of prices of goods, then, conversely, the hypothesis mentioned above 

follows. It should be noted that this hypothesis is a characteristic of normal monetary transactions. 

 The theory of the purchasing power of money can be used for the analysis of various price indexes. 

A price index, which characterizes changes in the purchasing power of money, can be determined as a 

relationship between the purchasing power of money between two periods of time. If a price index satisfies 

this definition, then from a theoretical point of view, it should correspond to some functional form for the 

purchasing power of money.  Using our theory of the purchasing power of money, we are able to comment 

on the suitability of various index number formulae to represent the purchasing power of money. Using the 

relationship between various assumptions about the purchasing power of money function, we can relate 

these assumptions to various index number formulae and, as a result, make suggestions on the suitability 

of various index number formulae.    

                                                
8 The authors are thankful to M.V. Ignatiev and N.S. Chetverikov for their comments to this paper. 
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 The above approach is used in the second part of the article in order to analyse various price index 

formulae such as the aggregative index, a geometric mean index, and the “ideal” index, endorsed by Irving 

Fisher. 

 The aggregative index is based on the assumption that relative quantities purchased remain fixed 

over time, no matter how prices change over time. 

 The relatively simple assumption that the price index depends only on the relative changes of prices, 

enables one to determine the functional form of the price index (which turns out to be a weighted geometric 

mean with weights proportional to the sales of traded goods).  Consequently, as mentioned above, this index 

also determines the function that characterizes the purchasing power of money. This functional form for 

the purchasing power of money also has the consequence that the amount of money paid for each transacted 

product is a constant share of the total expenditure on all products. 

The ideal formula of Irving Fisher is a function, not only of prices, but also of the quantities of 

transacted goods. However, it can be transformed into a function that depends only on prices and then this 

new function can be used to derive a corresponding functional form for the purchasing power of money. In 

this case, the dependency of quantities of goods on prices is more flexible than in the two earlier cases 

mentioned above. 

 It should be clear that a definite relationship between the quantity of transacted goods and prices 

can be assumed only in such cases where the utility of goods and the means of their production do not 

change. It follows that this limitation on the function which represents the purchasing power of money also 

applies to the price indexes as measures of changes in the purchasing power of money.   

 
General properties of the function that characterizes  

the purchasing power of money. 

 
1. The purchasing power of money as a function of the quantities of transacted goods9 and the 

quantity of money paid for them. 

 
The ability of a known quantity of money to be exchanged for greater or smaller quantities of economic 

goods is called the ‘purchasing power of money’. Here we will be considering the purchasing power of 

money in relation to economic turnover as a whole, and not from the viewpoint of any one participant of 

this turnover. We assume that the purchasing power of one unit of money 𝜔 (omega) is a definite value at 

any moment in time. As such, it should depend on all transactions of economic goods in a country: on 

quantities of all transacted (i.e., sold and, consequently, purchased) economic goods, on their prices and on 

                                                
9 Editors’ note: when literally translated, the authors used the phrase “circulated goods”.  
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the overall quantity of money that was paid for these goods. However, in this article we make only the 

simplest assumption; namely that the purchasing power of money is determined by the quantity of goods 

(goods—in the narrow meaning of this word; i.e., economic goods, produced and consumed in the process 

of economic life) and the quantity of money, which was used to purchase these goods in a given period of 

time, i.e.: 

 
𝜔 = 𝜔(𝑞&, 𝑞/, … , 𝑞1, 𝐸), 10      (1) 

 
where the 𝑞&, 𝑞/, … , 𝑞1 denote the quantities of transacted goods and 𝐸 denotes the quantity of money (in 

cash and in monetary equivalents), paid for all the goods.11 

 It is not difficult to see that the above quantitative model for the purchasing power of money can 

be based upon a quantitative theory of money. Indeed, the so called “equation of exchange” formulated by 

Irving Fisher is described by him as follows: 

“We shall still use 𝑀 to express the quantity of actual money, and 𝑉 to express the velocity of its 

circulation. Similarly, we shall now use 𝑀′ to express the total deposits subject to transfer by check; 

and 𝑉′ to express the average velocity of circulation. The total value of purchases in a year is 

therefore no longer to be measured by 𝑀𝑉, but by 𝑀𝑉	 + 	𝑀′𝑉′. The equation of exchange, 

therefore, becomes: 𝑀𝑉	 + 	𝑀’𝑉’	 = 	∑𝑝𝑄	 = 	𝑃𝑇.”12 

 
In the above equation, 	𝑝  denotes the price of a good, 𝑄 denotes the corresponding quantity of this good, 

𝑃 denotes the overall level of prices for the period under consideration (the magnitude of 𝑃 is inversely 

related to the purchasing power of money) and 𝑇 denotes the volume of trade—“the sum of all 𝑄”.13 

∑𝑝𝑄, being equal to  𝑀𝑉 +𝑀′𝑉′ and in our notation, is also equal to 𝐸 which is the quantity of money (in 

cash and in monetary equivalents) paid for all the goods, 𝑃 is the magnitude that is inverse to the purchasing 

                                                
10 In the right-hand side of an equation, for the symbol denoting a functional relationship, we will use the same letter 
(𝜔, 𝜓, etc.) as for the value of the function. 
11 Editors’ note: The original text used 𝑎&, 𝑎/,… , 𝑎1  instead of 𝑞&,𝑞/,… , 𝑞1 and 𝐿 instead of 𝐸 (for aggregate 
expenditure on goods and services). We changed this notation to reflect current notational conventions. 
12 Editors’ note: We included the original quotation from Fisher (1911, p. 37) rather than translating its Russian 
version. Note that Fisher used 𝑆 instead of ∑ to indicate the summation sign. 
13 Editors’ note: The last quotation is also closely related to the discussion in Fisher (1911, p. 26). It is worthwhile to 
record this quotation in its context because it explains Fisher’s methodology more completely: “We may, if we wish, 
further simplify the right side by writing it in the form 𝑃𝑇 where 𝑃 is a weighted average of all the 𝑝's, and 𝑇 is the 
sum of all the 𝑄's. 𝑃 then represents in one magnitude the level of prices, and 𝑇 represents in one magnitude the 
volume of trade.” In our notation, Fisher sets 𝑀𝑉 = 𝑃𝑇 = 𝐸 = ∑ 𝑝C𝑞C1

CD& . Thus Fisher’s price level 𝑃 is equal to 𝐸/𝑇 
which in turn is approximated by 𝐸/∑ 𝑞C1

CD&   which is a unit value price level. Finally, Fisher sets the purchasing 
power of money equal to 1/P, the reciprocal of the price level. This is the theory that Konüs and Byushgens are 
generalizing. Their more general price level is set equal to 𝐸/𝑓(𝑞) where f(q) is an aggregate quantity level or utility 
level. 
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power of money, i.e., 1/𝑃 = 𝜔,   𝑇 denotes “the volume of trade” which in turn, is set equal to some function 

of the quantity of the transacted goods, 𝑓(𝑞&, 𝑞/, … , 𝑞1). 

Thus, 
 

1
𝑃
=

𝑇
∑𝑝𝑄

, or							𝜔 =
𝑓(𝑞&, 𝑞/, … , 𝑞1)

𝐸
. 

 
The difference in our statement of the problem is only that in this work we are not interested in the total 

quantity of money in the economy, and the velocity of its circulation and therefore we did not formally 

define the variables 𝑀, 𝑉, 𝑀’ and 𝑉’. 

 If we look at the problem from the perspective of the theory of labour cost, then the above formula 

for the purchasing power of money can be expressed in the following way: let 𝜓 (psi) be the labour cost of 

all transacted goods (the quantity of the direct and indirect labour that is required to produce these goods). 

If the utility from the goods and the techniques of their production do not change then the aggregate labour 

valuation of the transacted goods can again be regarded as a function of the quantities transacted: 

 
      𝜓 = 𝜓(𝑞&, 𝑞/, … , 𝑞1) 
 
Then, the value of the purchasing power of money will be, naturally, determined by the aggregate labour 

cost, so that the overall labour purchasing power of money corresponding to one monetary unit can be 

defined as follows:  

 

𝜔 =
𝜓
𝐸
=
𝜓(𝑞&, 𝑞/, … , 𝑞1)

𝐸
 

 

i.e., the purchasing power of money from our restatement of the problem is still a function of the quantities 

of transacted goods and the quantity of money paid for them. 

 

2. The mathematical characterization of normal money circulation 
 

Consider an assumption when from one period of time to another there are changes in quantities of 

transacted goods and in money paid for them, but the purchasing power of money remains constant. This 

assumption corresponds to what we call normal monetary circulation: 

 
𝜔 = 𝜔(𝑞&, 𝑞/, … , 𝑞1, 𝐸) = 𝑐𝑜𝑛𝑠𝑡.    (2) 
 

One of the main properties of the modern theory of normal monetary circulation is that the issuance of 

money by central banks is made in correspondence with the needs of funding turnover; i.e., funding the 

purchase of market goods and services. According to this theory, banks grant loans to market participants 
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so that every newly arriving batch of goods can be sold at the existing price at that moment of time. If prices 

are changing, then the corresponding loan sizes also change. When a transacted good is transferred from its 

producer to a consumer, the loan matures and the loan is returned to the lending bank. 

 To briefly formulate the meaning of the phenomena occurring in normal monetary circulation, we 

note that when quantities of goods in the turnover are changing and the purchasing power of money remains 

constant, we say that a small (relative to the overall turnover) increase in the sold goods causes the quantity 

of money paid for them to increase by exactly the amount so that these goods can be sold at the existing 

prices. Conversely, if at any period of time, less quantities of goods are sold than in a previous period of 

time, and the quantity of money paid for all these goods decreases exactly by the same amount that is equal 

to the value of the decreased quantities of goods at the existing prices, then the purchasing power of money 

remains unchanged. 

 Mathematically, this condition can be expressed as follows: let 𝑝&, 𝑝/,… , 𝑝1 represent the prices of 

goods. Then the constant purchasing power of money assumption is the following one: 

 
∑ 𝑝C𝑑𝑞C1
CD& = 𝑑𝐸      (3) 

 
i.e., the purchasing power of money is unchanged, if the sum of all infinitesimal changes (positive or 

negative) of quantities of transacted goods, multiplied by their prices, equals the change in the quantity of 

money that is paid for all the goods.  

 From this equality we can derive a formulation of another, and equivalent, condition of constancy 

of the purchasing power of money: the purchasing power of money remains unchanged if the sum of all 

infinitesimal changes (positive or negative) of all prices multiplied on the quantities of the [corresponding] 

transacted goods, equals zero, i.e., if 

 
∑ 𝑞C𝑑𝑝C1
CD& = 0.                     (4) 

 
Indeed, because  

 
𝑞&𝑝& + 𝑞/𝑝/ + ⋯+ 𝑞1𝑝1 = 𝐸      (5) 

 
then taking the total differential of both sides of this relation, we have 

 

𝑑𝐸 =	∑ 𝑝C𝑑𝑞C1
CD& + ∑ 𝑞C𝑑𝑝C1

CD&       
 
from which, using (3), we get (4), and conversely, using (4), we get (3). 
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3. The price of a good as a function of quantities of transacted goods and the quantity of money 

paid for them. 

 
Based on the premises (1) and (3), a series of interesting conclusions can be mathematically derived. These 

conclusions can be justified, evidently, only under the condition that the magnitudes with which we will 

operate can be measured continuously and the functions that we postulate can be differentiated. The 

question of the suitability of such conditions has been well-discussed by mathematical economists.  

 Let us prove, first of all, that if the functional form for the purchasing power of money is known, 

then the price of each good can be determined as a function of the quantities of transacted goods and of the 

quantity of money paid for them.14 

 Equality (3) is considered, as the assumption, equivalent to the condition that 𝜔  is constant, i.e., 

that it holds in all cases when  𝑑𝜔 = 0, and because of (1), 𝜔 is a function of 𝑞&, 𝑞/, … , 𝑞1, 𝐸 then, it should 

also be the case that:15 

𝜔 = 𝜆OP𝑝C𝑑𝑞C

1

CD&

− 𝑑𝐸R, 

where 𝜆 is some unknown multiplier. 

 Differentiating 𝜔	in the left-hand side of this relation, we get: 

 

P
𝜕𝜔
𝜕𝑞C

𝑑𝑞C

1

CD&

+
𝜕𝜔
𝜕𝐸

𝑑𝐸 = 𝜆OP𝑝C𝑑𝑞C

1

CD&

− 𝑑𝐸R, 

 

and so, under the assumption that there are no more relationships among 𝑞&, 𝑞/, … , 𝑞1 and 𝐸 except as in 

(2), it follows that 

 
𝜕𝜔
𝜕𝑞&

= 𝜆𝑝&,
𝜕𝜔
𝜕𝑞/

= 𝜆𝑝/, … 	 ,
𝜕𝜔
𝜕𝑞1

= 𝜆𝑝1,
𝜕𝜔
𝜕𝐸

= −𝜆 

or 
𝜕𝜔
𝜕𝑞&
𝑝&

=

𝜕𝜔
𝜕𝑞/
𝑝/

= 	… =

𝜕𝜔
𝜕𝑞1
𝑝1

=
𝜕𝜔
𝜕𝐸
−1

= 𝜆																															(6) 

 

                                                
14 Editors’ note: In this section, the authors essentially show how a system of inverse demand functions can be derived 
from a knowledge of the functional form for a consumer’s direct utility function, 𝑓(𝑞&,… , 𝑞1) or 𝜓(𝑞&,… , 𝑞1), and a 
knowledge of total expenditure 𝐸 on the 𝑛 goods. Independent expositions of this result can be found in Hotelling 
(1935) and Wold (1944; 69-71). It turns out that this result enables statisticians to derive Hicksian reservation prices 
using econometric techniques; see Hicks (1940), Diewert and Feenstra (2019) (2022).  
15 Editors’ note: It is not clear at this point why (6) is true but later in section 6 below, they introduce the assumption 
of utility maximizing behavior which justifies the use of (6). 
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Solving the system (6)16 with respect to all 𝑝C, we get:17 

																																									𝑝C = −

𝜕𝜔
𝜕𝑞C
𝜕𝜔
𝜕𝐸

,						𝑖 = 1,… , 𝑛																																								(7) 

i.e., the quantity of transacted goods and the quantity of money paid for them determine the prices at which 

those goods were transacted. 

 This conclusion illustrates the importance of the purchasing power of money function. If we can 

determine the functional form for this function, then we can obtain the functions that describe the 

relationship between the prices and the quantities of the transacted goods. 

 In contrast to the so-called ‘demand curve’, which must, in our opinion, correspond to dependency 

between the consumption of a commodity and its price, this new curve18 should be called the ‘curve of 

transaction’ because it reveals how the transaction (the purchase and sale) of the good changes with the 

fluctuations in its price. Such a dependency, undoubtedly, exists; it is also confirmed through statistical 

approaches. It is not a reaction of the consumption of a good to a change in its price, because the good can 

be purchased for building up inventories for an undetermined period of time. It is also not a reaction of the 

production of a good to its price, because the good can be sold from existing inventories. It should be 

obvious that changes in prices can be accompanied with unforeseen changes in quantities in the circulation, 

unless we assume that the utility functions and production functions remain constant. From this it follows 

that the equalities (7) and also (1) are justified only if these constancy assumptions are satisfied. 

In real life there is no economy where the production technology remains constant for long periods 

of time. However, theoretically, this fact does not contradict basic economic principles and in such an 

economy, it appears, that there can be price changes of interest to us. If a society in which economic life, at 

some point in time, was not in an equilibrium and stopped evolving, (i.e., the economy was transformed 

into a simple reproduction), then a long period would pass, until consumption and production adapted to 

the given state of society, reaching a new economic equilibrium. It must be assumed that during such a 

transition period, corresponding to our assumptions (unchanging utility and production functions), there 

could be price and quantity fluctuations not explained by our model.  

It is especially worth noting that exactly such fluctuations, independent from new inventions, wars, 

discoveries of reserves of natural resources, etc. must especially attract the attention of economists focusing 

                                                
16 Editors’ note: In the original, they referred to their equation (5) here, apparently due to a typo. 
17 Editors’ note: In modern terminology, (7) is the system of inverse demand functions. We will justify equations (7) 
in our commentary.  
18 Editors’ note: The new curve is an inverse demand function. 
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on current market conditions.19 Forecasts of market conditions, based on assumptions about possible 

changes of prices and production in the near future, can be done only under ceteris paribus assumption, 

similar to the same disclaimers that we make here. 

 

4. The purchasing power of money as a function of the prices of goods 

 
The proof of the statement that the purchasing power of money can be considered as a function of prices of 

goods consists of the following arguments. 

If the expressions in (7) are substituted into the identity (5), then we obtain 

 

𝑞&
𝜕𝜔
𝜕𝑞&

+ 𝑞/
𝜕𝜔
𝜕𝑞/

+⋯+ 𝑞1
𝜕𝜔
𝜕𝑞1

+ 𝐸
𝜕𝜔
𝜕𝐸

= 0.																															(5) 

 

Because this relationship must be an identity, if there is no dependency between 𝑞&, 𝑞/, … , 𝑞1 and 𝐸, then 

it means that  𝜔  must be a homogeneous function of degree zero with respect to 𝑞&, 𝑞/, … , 𝑞1 and 𝐸. i.e., 

for all values of 𝑞&, 𝑞/, … , 𝑞1 and 𝐸, we have 

 
𝜔(𝑘𝑞&, 𝑘𝑞/, … , 𝑘𝑞1, 𝑘𝐸) = 𝜔(𝑞&, 𝑞/, … , 𝑞1, 𝐸)        (8) 

 
where 𝑘 is any positive multiplier.20 

 From an economic point of view this means that with an increase or decrease in the quantities of 

goods and money expenditure by the same proportion, the purchasing power of money does not change. 

 From (8) it follows that 𝜔 is a function of only 𝑛  independent variables, namely, it is a function of 

the following ratios: 
𝑞&
𝐸
,
𝑞/
𝐸
,… ,

𝑞1
𝐸

 
 
and therefore, due to (7), 𝑝&, 𝑝/, … , 𝑝1 will be functions of these ratios. Therefore, the system (7) can be 

solved with respect to these ratios and so we get:21 

                                                
19 Editors’ note: Here and in the next sentence, the authors avoided the term “market conditions” (which we decided 
to use in translating them) and instead used a more politically neutral for them term “conjuncture of the current 
moment”, often used by other Soviet economists in place of “market conditions”. Note that the term “conjuncture” 
also appears in the name of their institute (led by Kondratiev, Slutsky and others). 
20 Editors’ note: Again returning to the model for the purchasing power of money that was outlined in Section 1, the 
authors define 𝜔(𝑞, 𝐸) as 𝑓(𝑞)/𝐸 where 𝑓(𝑞) is the aggregate utility function of purchasers, Assumption (8) implies 
that 𝑓(𝑘𝑞) = 𝑘𝑓(𝑞), 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑘 > 0; i.e., assumption (8) implies that 𝑓 is a linearly homogeneous function. 
21 Editors’ note: Under the assumption of utility maximizing behavior on the part of purchasers where the utility 
function is linearly homogeneous, it can be shown that 𝐸 = 𝑐(𝑝)𝑓(𝑞) where 𝑝 ≡ [𝑝&,… , 𝑝1] is the vector of prices 
that purchasers face, 𝑞 ≡ [𝑞&,… , 𝑞1], is the aggregate vector of commodity purchases, 𝑓(𝑞) is aggregate utility and 
𝑐(𝑝) is the unit cost function that is dual to 𝑓; see Shephard (1953), Samuelson (1953), Samuelson and Swamy (1974) 
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𝑞C
𝐸
= 𝑓C(𝑝&, 𝑝/, … , 𝑝C,… , 𝑝1)																																							(9) 

 

Recalling that 𝜔, as pointed out above, is a homogeneous function of degree zero and depends on the ratios 

𝑞C/𝐸, it means that with the help of the equations in (9), it can be represented as the following 

 
         𝜔̀ = 𝜔̀(𝑝&, 𝑝/,… , 𝑝1)     (10) 

 

(where the bar over a variable indicates a change of variables).22 

 The dependency of the purchasing power of money on prices of goods cannot be disputed. Indeed, 

every set of prices corresponds to a definite value of the purchasing power of money and an increase or a 

decrease of prices will correspond to a decrease or increase of the purchasing power of money. However, 

one should not forget the above-mentioned condition of no change in production technologies and utilities 

from the goods, because outside of this condition, there can be such changes in prices that do not influence 

the purchasing power of money. For example, after the peace agreement, the prices for military products in 

England fell, yet we do not consider that this induced the increase in the purchasing power of the Pound. 

We also do not consider that the purchasing power of the Dollar in the last decades increased to any degree 

due to a continuous decrease of prices on cars caused by technology improvements. 

 If we accept as obvious the statements that: 1) the purchasing power of money is a function of goods 

and money, exchanged on one another and, at the same time, 2) the purchasing power of money can be 

represented as a function of only prices, then, based on them it is possible to prove our postulated converse 

statement, that the purchasing power of money does not change when the sum of infinitesimal changes of 

goods, multiplied on their prices, equals the change of the quantity of money, paid for all those goods. 

 Indeed, the equation  
 

𝜔 = 𝜔(𝑞&, 𝑞/, … , 𝑞1, 𝐸) = 𝑐𝑜𝑛𝑠𝑡.   (2’) 
 
and, on the other hand, 

    𝜔̀ = 𝜔̀(𝑝&, 𝑝/,… , 𝑝1) = 𝑐𝑜𝑛𝑠𝑡.    (11) 
 
are equations characterizing the same manifold, but in different coordinates: the first one is in the 

coordinates of 𝑞&, 𝑞/, … , 𝑞1, 𝐸  and the second one is in the coordinates of 𝑝&, 𝑝/, … , 𝑝1.23 

                                                
and Diewert (1974; 110-117). The unit cost function is defined as the minimum cost of achieving one unit of utility; 
i.e., 𝑐(𝑝) ≡ min

d
	{∑ 𝑝C𝑞C1

CD& 	 ∶ 	𝑓(𝑞) 	= 	1}.  
22 Editors’ note: We give an explanation for equations (9) and (10) in our commentary (Appendix A).  
23 Editors’ note: Although the authors did not use the word “dual”, in this statement and its description below, they 
explicitly emphasized here the dual nature of the problem well before the work of Shephard (1953) and others. In 
particular, they present this duality for their purchasing power of money, showing that it can be represented in a primal 
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 Between these two representations, there is a necessary connection:24 

 
𝑞&𝑝& + 𝑞/𝑝/ + ⋯+ 𝑞1𝑝1 = 𝐸.     

 
This last relationship can be treated as an equation of a (hyper) plane: if we consider 𝑝&, 𝑝/,… , 𝑝1  as point-

coordinates, then 𝑞&, 𝑞/, … , 𝑞1,𝑀 will be the (non-homogeneous) tangential coordinates   such that 

𝑞&, 𝑞/, … , 𝑞1  will be proportional to cosines of angles of normal to the hyperplanes with the axes of the 

coordinate system. 

 Therefore, equation (11) will be the equation of a manifold  𝜔̀ = 𝑐𝑜𝑛𝑠𝑡. Meanwhile, in point-

coordinates, the equation (2’) will be the equation of the same manifold in tangential coordinates. 

 Thus, the relationship in (4) simply expresses that the normal to the tangent hyperplane is 

perpendicular to any movement on the surface  𝜔̀ = 𝑐𝑜𝑛𝑠𝑡.  And, from (4), as was shown above, the 

expression (3) follows. 

 

5. The method of analysis for price indexes 

 
Because the purchasing power of money depends on the prices of goods, it is natural that the measurement 

of relative changes in the purchasing power of money with the help of price indexes is widely used in 

practice. Fundamentally, there is a perfectly correct idea that relative changes in the purchasing power of 

money from one period of time to another can be determined by the prices of these time periods. Indeed, 

an index of the purchasing power of money must be defined as a ratio of the purchasing power of money at 

one period of time to the purchasing power of money at another period of time. Denoting the prices in one 

period of time as 𝑝&h , 𝑝/h ,… , 𝑝1h  and the prices in another period of time as 𝑝&hh, 𝑝/hh,… , 𝑝1hh, while the 

purchasing power of money in the former period of time as  𝜔̀(𝑝&h , 𝑝/h ,… , 𝑝1h ) and in the other period of time 

as 𝜔̀(𝑝&hh, 𝑝/hh,… , 𝑝1hh), we will have the following expression for the index of the purchasing power of money, 

𝐽:25 

 

𝐽 =
𝜔̀(𝑝&h , 𝑝/h ,… , 𝑝1h )
𝜔̀(𝑝&hh, 𝑝/hh,… , 𝑝1hh)

= 𝐽(𝑝&h , 𝑝/h ,… , 𝑝1h , 𝑝&hh, 𝑝/hh,… , 𝑝1hh).											(12) 

                                                
space as a function of quantities and total monetary expenditures 𝜔(𝑞&, 𝑞/,… , 𝑞1, 𝐸) as well as in the dual space, as a 
function of only prices 𝜔̀(𝑝&, 𝑝/,… , 𝑝1). The latter can be called as dual purchasing power of money. The earliest 
development in economics of this sort we are aware of is Shephard (1953) in the context of production theory and 
Hotelling (1935) and Wold (1944; 69-71) in the context of consumer theory.  
24 Editors’ note: We also have the equation 𝐸	 = 	𝑐(𝑝)𝑓(𝑞).  
25 Editors’ note: Using our notation from the previous section, it can be seen that the authors define the price index 
𝐽(𝑝’, 𝑝’’) as 𝑐(𝑝’’)/𝑐(𝑝’). This is the Konüs (1924) true cost of living index in the case of homothetic preferences, 
which reached the English audience in 1939, in Econometrica, due to the translation by Henry Schultz, who also 
provided a discussion to that paper in the same issue of the journal; see Schultz (1939).  
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Note that, in the index  𝐽(𝑝&h , 𝑝/h , … , 𝑝1h , 𝑝&hh, 𝑝/hh,… , 𝑝1hh), the first and the second groups of variables entered 

separately, i.e., the prices of one period of time can be grouped in the numerator and the prices of the other 

period of time can be grouped in the denominator. From the knowledge of the formula for the index, this 

allows us to determine the corresponding form of the function of the purchasing power of money. 

 Analytically, the property of separability of variables can be shown in the following formula. When 

taking the logarithm of both sides of (12), we get 

 
log 𝐽 = log 𝜔̀(𝑝&h , 𝑝/h ,… , 𝑝1h ) − log 𝜔̀(𝑝&hh, 𝑝/hh,… , 𝑝1hh). 

 

Differentiating both sides of the last equation, once with respect to any 𝑝Ch and another time with respect to 

any 𝑝mhh, we get 

 
log 𝐽
𝜕𝑥Ch𝜕𝑥mh

= 0.																																											(13) 

 
Therefore, our above-mentioned definition of the index is only consistent with those forms 

𝐽(𝑝&h , 𝑝/h ,… , 𝑝1h , 𝑝&hh, 𝑝/hh, … , 𝑝1hh) that satisfy conditions (13) for any pair of 𝑖 and 𝑘. 

If these conditions are satisfied, then the index 𝐽  can be expressed as a ratio of two functions: 

 

𝐽 =
𝑈(𝑝&h , 𝑝/h ,… , 𝑝1h )
𝑉(𝑝&hh, 𝑝/hh,… , 𝑝1hh)

, 

 
from which the former depends only on 𝑝&h , 𝑝/h ,… , 𝑝1h   and the latter depends only on 𝑝&hh, 𝑝/hh,… , 𝑝1hh. 

In such a case, we have 
 

𝐽 =
𝜔̀(𝑝&h , 𝑝/h ,… , 𝑝1h )
𝜔̀(𝑝&hh, 𝑝/hh,… , 𝑝1hh)

=
𝑈(𝑝&h , 𝑝/h ,… , 𝑝1h )
𝑉(𝑝&hh, 𝑝/hh,… , 𝑝1hh)

, 

Or 

𝐽 =
𝜔̀(𝑝&h , 𝑝/h , … , 𝑝1h )
𝑈(𝑝&h , 𝑝/h , … , 𝑝1h )

=
𝜔̀(𝑝&hh, 𝑝/hh,… , 𝑝1hh)
𝑉(𝑝&hh, 𝑝/hh,… , 𝑝1hh)

, 

 
Because the groups of variables 𝑝&h , 𝑝/h ,… , 𝑝1h   and 𝑝&hh, 𝑝/hh,… , 𝑝1hh are independent from each other, 

the latter expression gives us: 

 
𝜔̀(𝑝&h , 𝑝/h , … , 𝑝1h )
𝑈(𝑝&h , 𝑝/h , … , 𝑝1h )

= 𝑐𝑜𝑛𝑠𝑡. 

or 
 

𝜔̀(𝑝&h , 𝑝/h ,… , 𝑝1h ) = 𝐶 × 𝑈(𝑝&h , 𝑝/h ,… , 𝑝1h ). 
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Thus, any form of the index, satisfying conditions (13), i.e., separability of the two groups of variables, is 

a hypothesis about the form of a function of the purchasing power of money. 

 Therefore, the index of the purchasing power of money is a function of prices in the base period 

and the current period, in which prices of these two periods can be separated. Any form of an index, 

satisfying this condition provides the possibility of determining the corresponding type of the function of 

the purchasing power of money and, as a result, its implicitly accepted form of dependency between 

quantities of transacted goods and prices. 

 In the next section we will perform an analysis of some forms of indexes, while for now, we only 

point out that the simple arithmetic mean cannot be a theoretical index of the purchasing power of money, 

because prices in the base period and in the current period cannot be separated in the way described above.26 

 

6. The property of free transaction of goods at fixed prices to attain the maximal value for the 

purchasing power of money. 

 
The system of equations (6), derived from the assumptions accepted in the beginning of this article is 

equivalent to the system of equations, provided by economists of the mathematical school of thought. This 

allows for the discovery that the function of the purchasing power of money has the same property as the 

one possessed by the function of the overall state of satisfaction of preferences. Namely, in consumer 

theory, it is postulated that, at given prices and the total expenditure, the consumer chooses the quantities 

of goods so that the overall state of satisfaction of preferences attained maximal value.  Here we can show 

that at given prices and the quantity of money, paid for all goods, the quantities of the transacted goods are 

determined so that the purchasing power of money could receive maximal value.27 

 System (6), under assumption that 𝑝&, 𝑝/, … , 𝑝1 are given, means that the partial derivatives of the 

function 

 

                                                
26 See the unfavourable remarks of I. Fisher about the suitability of the simple arithmetic mean of the price ratios as a 
price index in his book The Making of Index Numbers” (p. 30): “And if this book has no other effect than to lead to 
the total abandonment of the simple arithmetic type of index number, it will have served a useful purpose.” Editors’ 
note: we used the original English quotation from Fisher (1922, p. 30) rather than translating its Russian version. The 
arithmetic average index the authors refer to is the Carli index, defined in our notation as  &

1
∑ 𝑝Chh/𝑝Ch1
CD& . Fisher (1922; 

29) also had this to say about the Carli index: “But we shall see that the simple arithmetic average produces one of the 
very worst of index numbers.” 
27 Editors’ note: From section 1, the authors defined their purchasing power of money function in the primal space as 
𝜔(𝑞, 𝐸)	º	𝑓(𝑞)/𝐸. In this section, the optimization problem that is defined by the authors is: 

   max
d
tu(d)
v
∶ 	∑ 𝑝C𝑞C1

CD& = 	𝐸w 	= 	 x&
v
ymax

d
{𝑓(𝑞) ∶ 	∑ 𝑝C𝑞C1

CD& = 	𝐸}. 
 
Thus, solving the problem of maximizing the purchasing power of money is equivalent to solving the aggregate 
purchaser expenditure constrained utility maximization problem.  
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𝑈 = 𝜔 − 𝜆(∑𝑞C𝑝C − 𝐸) 
 
with respect to each variable, 𝑞&, 𝑞/, … , 𝑞1, 𝐸  equal zero, i.e., system (6) is obtained in such a case when 

we search for the extremum of function 𝑈 or, equivalently, the extremum of function 𝜔 under condition 

(5). And because system (6) together with equation (5) determines the values dz
v
, d{
v
, … , d|

v
, then at these 

values the function 𝜔(𝑞&, 𝑞/, … , 𝑞1, 𝐸) attains an extremum, if it is not on the boundary of the domain of 

the variables 𝑞&, 𝑞/, … , 𝑞1, 𝐸. 

 That is, at given prices, the ratios of quantities of transacted goods to quantity of money, paid for 

all the goods, are determined such that the purchasing power of money attains an extremum. 

 An analogous property is possessed by the function  𝜔̀(𝑝&, 𝑝/,… , 𝑝1). 

 Condition 𝜔̀ = 𝑐𝑜𝑛𝑠𝑡  or  𝑑𝜔̀ = 0  must be equivalent to condition (4): 

P𝑞C𝑑𝑝C

1

CD&

= 0. 

Therefore, 

𝑑𝜔̀ = 𝜇P𝑞C𝑑𝑝C

1

CD&

, 

where 𝜇 is some unknown multiplier. 

 Opening up the left-hand side of this last expression, we get 

 

P
𝜕𝜔̀
𝜕𝑝C

𝑑𝑝C

1

CD&

= 𝜇P𝑞C𝑑𝑝C

1

CD&

, 

 
from which it follows that28 
 

𝜕𝜔̀
𝜕𝑝&
𝑞&

=

𝜕𝜔̀
𝜕𝑝/
𝑞/

= 	… =

𝜕𝜔̀
𝜕𝑝1
𝑞1

= 𝜇.																																		(14) 

 
If 𝑞&, 𝑞/, … , 𝑞1 and 𝐸 are given, then system (14) means that the partial derivatives of the function: 

 

𝑉 = 𝜔̀ − 𝜇(∑𝑞C𝑝C − 𝐸) 

                                                
28 Editors’ note: Equations (14) play an important role in section 9 below. Let 𝜔̀C

∗(𝑝) and 𝑐C(𝑝) denote the partial 
derivatives of 𝜔̀(𝑝) and 𝑐(𝑝)  with respect to 𝑝C. Using Shephard’s (1953, p. 11) Lemma, under the hypothesis of 
utility maximizing behavior with a linearly homogeneous utility function 𝑓(𝑞), we have 𝑞C = 𝑐C(𝑝)𝑓(𝑞) for 𝑖	 =
	1, … , 𝑛. Since  𝜔̀(𝑝) = 1/𝑐C(𝑝), we have  
 

 𝜔̀C
∗(𝑝) = -	𝑐C(𝑝)/𝑐(𝑝)/ or 𝑐C(𝑝) 	= 	-	𝑐(𝑝)/	𝜔̀C∗(𝑝) for 𝑖	 = 	1,… , 𝑛.  

 
Thus 𝑞C 	= 	𝑘		𝜔̀C∗(𝑝) for 𝑖	 = 	1, … , 𝑛 where 𝑘 ≡ 	-	𝑐(𝑝)/𝑓(𝑞). These equations play a prominent role in section 9 of 
the paper. 
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with respect to each variable 𝑝&, 𝑝/,… , 𝑝1  equals zero, i.e., the system (14) is obtained in such a case when 

we search for the extremum of function 𝑉 or, equivalently, the extremum of function  𝜔̀   under condition 

(5).  System (14) together with equation (5) determines the values 𝑝&, 𝑝/,… , 𝑝1, which in turn are equal to 

the values which correspond to an extremum of the function 𝜔̀(𝑝&, 𝑝/,… , 𝑝1) subject to the constraint (5), 

if the solution is not on the boundary of the domain of the variables 𝑝&, 𝑝/,… , 𝑝1. 

 That is, at given quantities of transacted goods, and at a given quantity of money [paid for all the 

goods], the prices are determined such that the purchasing power of money attains an extremum. 

With the help of geometric imagination, we are convinced that 𝜔̀(𝑝&, 𝑝/,… , 𝑝1) indeed is a 

conditional extremum (i.e., extremum under the condition that ∑𝑝C𝑞C = 𝐸) and that this extremum turns 

out to be a minimum,29 if we additionally make some obvious assumptions. In Figure 1, we depict the curve 

𝐴𝐵, defined by the equation  𝜔̀(𝑝&, 𝑝/) = 𝑐𝑜𝑛𝑠𝑡. We will call it “the curve of an equilibrium purchasing 

power of money”, in contrast to the analogous “indifference curve” [courbe d’indifference de goût], 

introduced into the consumer theory by Edgeworth and Pareto.30 

For the convenience of graphical expression on the plane we assume that there are only two goods 

and the purchasing power of money is a function of the prices of only these goods, 𝑝& and 𝑝/. On the 

corresponding axes, we depict the values of the prices of these two goods. On the axes perpendicular to the 

plane of the Figure and not depicted there, we will imagine that the values of the purchasing power of 

money are depicted. Thus, we will obtain some surface. Each point of the curve of the purchasing power of 

money 𝐴𝐵 corresponds to such a combination of values of prices of the purchasing power of money at 

which the purchasing power of money  𝜔̀ has one and only one value (the same as it has at the point 𝑅& 

with coordinates 𝑝&h  and 𝑝/h ); i.e., the curve of the equilibrium equals the same curve that is obtained if we 

cut the surface of the purchasing power of money by the plane parallel to the plane of the Figure, at the 

height corresponding to the given value of the purchasing power of money. 

 Each of the other curves of the equilibrium, shown in the Figure with thin lines, also contain a 

series of price combinations at which the purchasing power of money is constant, and each of these curves 

is different from each other only by parameters which correspond to its own value of the purchasing power 

of money. These different values of the purchasing power of money, corresponding to each curve, are 

denoted with Roman numerals I, II, II, IV, V and VI. It is natural to assume that the greater the prices the 

lower is the purchasing power of money, therefore the purchasing power of money, corresponding to the 

curve with label VI, is greater than the purchasing power of money corresponding to the curve with label 

V, etc.; i.e., the surface of the purchasing power of money (projection of the horizontal dissections of which 

                                                
29 Editors’ note: In the commentary, we derive the optimization problem that involves  𝜔̀(𝑝).  
30 Pareto Vilfredo.  Manuel d’économie politique. Paris, 1909. 
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and the essence of the curves of equilibrium) falls with the departure from the axes and the origin of the 

coordinate system. 

 The straight lines 𝑀𝑁, tangent to the curve of equilibrium 𝐴𝐵, depict the equation 𝐸 = 𝑞&𝑝& +

𝑞/𝑝/, i.e., each point of this line corresponds to the price combination that can be realized with the quantities 

of transacted goods 𝑞& and 𝑞/ and the overall quantity of money 𝐸 paid for these two goods (one of the 

price combinations that is actually realized corresponds to the point 𝑅& with coordinates 𝑝&h  and 𝑝/h ).  From 

this it follows that the ratio of intervals 𝑀𝑂 to 𝑂𝑁 equals the ratio of quantities of the transacted goods.  

Indeed, if 𝑝/ = 𝑀𝑂, then 𝑝& = 0, and we obtain: 𝐸 = 𝑀𝑂 × 𝑞/; conversely, if 𝑝& = 𝑂𝑁, then 𝑝/ = 0 and, 

therefore, 𝐸 = 𝑂𝑁 × 𝑞&; thus: 

 
𝑀𝑂 × 𝑞/ = 𝑂𝑁 × 𝑞&         

or      
𝑀𝑂
𝑂𝑁

=
𝑞&
𝑞/
. 

 
If, additionally, we introduce a natural assumption that relative changes between prices lead to opposite 

changes between quantities of the transacted goods, then the applied depiction of the equilibrium curves, 

presented in the Figure, will be justified.  Indeed, let the price 𝑝& decrease and instead of 𝑝&h  be 𝑝&hh and the 

price 𝑝/ increase and instead of 𝑝/h  be 𝑝/hh.  The point corresponding to new coordinates (𝑝&hh, 𝑝/hh) is depicted 

with 𝑅/.  Then, according to the assumption, the quantity of the transacted good 𝑞& relative to good 𝑞/ will 

increase, and so, the ratio ��
��

 also will increase, and the line 𝑀&𝑁& will be tangent to the equilibrium curve. 

 Based on the equilibrium curves depicted in the Figure, it follows that the point 𝑅& indeed satisfies 

the minimal value of the purchasing power of money, because all other points on the straight line 𝐾𝑁 lie 

on the equilibrium curves with greater values. 

 Based on this conclusion it is not difficult to conclude that, in its own turn, the extremum of the 

function 𝜔 xdz
v
, d{
v
, … , d|

v
y at the given prices turns out to be a maximum. Indeed, whatever the direction we 

give to the straight line 𝑀𝑁 at the given prices (𝑝&h , 𝑝/h ), for example, 𝑀/𝑁/ (i.e., however many changes 

we make to dz
v

 relative to d{
v

), the new value of the purchasing power of money (at any point 𝑄) will be 

lower, than at point 𝑅&, i.e., only one ratio between dz
v

 and d{
v

, namely the one depicted on the straight line 

𝑀𝑁 will give the maximal value to the purchasing power of money. 

The curves depict the equation  𝜔̀(𝑥&, 𝑥/) = 𝐶𝑜𝑛𝑠𝑡. (for the case of two goods transacted on the 

market).  In each point of the given curve of equilibrium, the magnitude of the purchasing power of money 

is the same, despite the change in prices. (The form of the curves corresponds to the geometric mean formula 

of the index.) The curves 𝐾𝑁 depict the equation 𝐸 = 𝑝&𝑞& + 𝑝/𝑞/.  These curves, depict combinations of 
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prices that facilitate the transaction of these quantities of goods with the given quantity of money paid for 

them. 

  𝑝/ 
 

             A         
           
     VI   V  IV III  II     I 
 
   𝑀& 
 
 
          𝑀 
 
 
 
          𝑀/   
                     𝑅/ 
 
                
       𝑅&  Q 
           
              B   𝑁/ 
      0     𝑁&     𝑁                              𝑝& 
           Price of good 1 
 

Figure 1.  Curves of equilibrium purchasing power of money.   
 
 

Postulate. At the given prices and at the given quantity of money, paid for all the goods, the quantities of 

transacted goods are determined such that the purchasing power of money could attain the maximal value; 

this result can be postulated directly. 

 

Indeed, each economic agent, spending money is, obviously, interested in the money having the highest 

purchasing power. Therefore, he spends the money on such goods that for him are the most valuable for 

whatever reasons (e.g., either for speculative considerations or for own consumption).  This leads to a 

situation where the quantities of the transacted goods are determined such that the purchasing power of 

money (in the sense of the entire economy) attains the maximal value. 

 The times we have lived through, generally speaking, are of an exceptional interest in the sense of 

economic evidence and in particular for demonstrating examples that support the reasoning outlined above. 

As an example, note that in 1919-1920, large quantities of goods were transacted (or, more precisely, were 

distributed) at given prices. Only infrequently were these prices higher than before the war, but the 
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purchasing power of money was hundreds of times, and later thousands of times, lower than before the war, 

because the quantities of the distributed (transacted) goods were allocated under [governmental] 

restrictions, not corresponding to the wishes of consumers. For instance, for one person, per month, the 

authorities were selling, say, 7 pounds of bread and 10 pounds of salted fish, but for bluing dye and baking 

soda they were selling as much as one wanted to buy. Due to this, a buyer should have been valuing the 

possessed hundreds of thousands of rubles at a very low value, because spending them all on bluing dye 

was not presenting the buyer with much interest. (Of course, we do not consider here those ways around 

the laws that were taken by a buyer by purchasing the products on the “free market”.)31 

 In a later period of time, the fall of the purchasing power of money was disguised by the so-called 

“required assortment” bundling. If there was a shortage of sugar, then with a purchase of 2 pounds of sugar 

in a cooperative, it was also necessary to buy  ¼ of a pound of tea. Under these conditions, the buyer, when 

spending money for this bundle, could justifiably assume that their purchasing power was lower than in the 

case when he was offered to buy as much tea and sugar as he needed. Or, here is another example: with the 

shortage of textile goods at retail shops (cooperative or private), there was a requirement to buy unpopular 

types of textiles in some proportions of the popular types. Obviously, those few dozens of rubles, which 

were spent by the seller, had greater purchasing power in his eyes if he could buy such an assortment that 

he viewed as the most beneficial. 

 Therefore, we believe that at given prices and given a quantity of money paid for all the transacted 

goods in a country, the purchasing power of money can have, generally speaking, any value.  However, 

under free market transactions, it attains only one value, namely, the maximal out of all possible values at 

given prices. And the quantities of transacted goods are determined such that the purchasing power of 

money attains this value. 

Based on this postulate, we can derive, conversely, as corollaries, the statements from the previous sections.  

 
Analysis of Some Functional Forms for the Price Index 

7. The Aggregative Index. 
 

We will make an assumption that the aggregative index (also called `budget index’ or a “basket index”) 

indicates the actual changes of the purchasing power of money. Let us write a formula of this index32 

𝐽 =
𝜔̀(𝑝&h , 𝑝/h ,… , 𝑝1h )
𝜔̀(𝑝&hh, 𝑝/hh,… , 𝑝1hh)

=
𝑞&h𝑝&hh + 𝑞/h 𝑝/hh + ⋯+ 𝑞1h 	𝑝1hh

𝑞&h 𝑝&h + 𝑞/h 𝑝/h + ⋯+ 𝑞1h 	𝑝1h
, 

                                                
31 Editors’ note: Considering the time this remark was written and published (1924-1926), we find it rather brave of 
the authors in exposing the problems that the Soviet Union had due to the suppression of a free market system.  
32 Editors’ note: This is the Laspeyres (1871) price index. The unit cost function that corresponds to this index is 
𝑐(𝑝) ≡ 𝑝 ∙ 𝛼 where 𝛼 is a vector of positive constants, 𝑝 is a price vector and	 𝑝 ∙ 𝛼 is the inner product of the two 
vectors. The dual utility function is known as a Leontief utility function.   
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where, as before, 𝑝&hh, 𝑝/hh,… , 𝑝1hh are prices in the current period, 𝑝&h , 𝑝/h , … , 𝑝1h  are prices in the base period 

and 𝑞&h , 𝑞/h , … , 𝑞1h  are the weights of the index that are equal to quantities of the goods transacted in the base 

period. 

 Because in this formula, the variables are separated, then, as proven above, it allows for determining 

the formula of the purchasing power of money, namely 

 

𝜔̀ =
𝐶

𝑞&h𝑝&h + 𝑞/h 𝑝/h +⋯+ 𝑞1h 	𝑝1h
	 

 

where 𝐶 is a constant coefficient.  Based on (14), we have: 
 

𝑞&h

𝑞&
=
𝑞/h

𝑞/
= 	… =

𝑞1h

𝑞1
 

 
i.e., the quantities of transacted goods always remain proportional to the weights of the index. In other 

words, the aggregative index, weighted by the national turnover, assumes, that the ratios between quantities 

of transacted goods remain constant, regardless of the changes of prices.33 

 It is not difficult to conclude that, in such a case, the curves of the equilibrium of the purchasing 

power of money will be straight lines (𝐾𝑁 in Figure 1). 

 

8. The geometric mean as a consequence of the hypothesis: the relative change in the purchasing 

power of money is determined by the relative changes of prices. 

 

Our formulation of the problem of index numbers for the purchasing power of money, which we proposed 

earlier is as follows: the index is a ratio of the purchasing power of money of one period in time to the 

purchasing power of money in another time period. This simple assumption regarding the form of the 

function of the index gives us the possibility to determine the form of the function for the purchasing power 

of money. 

 Assume that a relative change of the purchasing power of money is determined only by relative 

changes of prices: 

 

                                                
33 See the remarks of L.v. Bortkewicz that the aggregative index only passes the tests proposed by I. Fisher if there is 
no correlation between the relative changes in prices and between the relative changes in quantities of goods (Zweck 
und Struktur einer Prsesindexzahl//Nordisk Statistisk Tidskrift. 123. Band 2. Heft 3, 4, S. 385 und 386).  
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𝜔̀(𝑝&h , 𝑝/h , … , 𝑝1h )
𝜔̀(𝑝&hh, 𝑝/hh,… , 𝑝1hh)

= 𝐽 �
𝑝&h

𝑝&hh
,
𝑝/h

𝑝/hh
, … ,

𝑝1h

𝑝1hh
�.																																											(15) 

 
Let us now consider what this assumption actually means. 

 This requirement implies that the formula of the index does not depend on the units of measurement 

we take: kilograms or pounds, feet or meters, etc. With any other assumption, different from (15), with 

changes in the units of measurement in the formula of the index, we would have to also change the 

corresponding constant coefficients. 

 This requirement also implies that the absolute height of the prices in the first and the second 

periods of time does not have a meaning when measuring the relative changes of the purchasing power of 

money. Whatever the initial level of prices, certain changes lead to the corresponding certain changes in 

the purchasing power of money. 

 We have here, as can be seen, a very strong requirement.  It yields the following formula for the 

function  𝜔̀: 

 
𝜔̀ = 𝐶𝑝&

��z × 𝑝/
��{ × …× 𝑝1

��| = 𝐶/(𝑝&
�z × 𝑝/

�{ × …× 𝑝1
�|)    (16) 

 
where 𝐶, 𝛼&, 𝛼/, … , 𝛼1 are constant magnitudes.34 

 The relation (15) should hold as an identity for all values 𝑝&h , 𝑝/h , … , 𝑝1h ,	 𝑝&hh, 𝑝/hh,… , 𝑝1hh.  Therefore, 

it will determine the type of the function for 𝜔̀  and 𝐽. 

 
Indeed, differentiate this relation first with respect to some 𝑝Ch and then with respect to some 𝑝Chh: 

 
1

𝜔̀(𝑝hh)
×
𝜕𝜔̀(𝑝h)
𝜕𝑝Ch

=
1
𝑝Chh

× 𝐽C. 

 

−
𝜔̀(𝑝h)

[𝜔̀(𝑝hh)]/
×
𝜕𝜔̀(𝑝hh)
𝜕𝑝Chh

= −
𝑝Ch

𝑝Chh
/ × 𝐽C 

 

where 𝜔̀(𝑝h) denotes the function 𝜔̀(𝑝&h , 𝑝/h , … , 𝑝1h ), while 𝜔̀(𝑝hh) denotes the function 𝜔̀(𝑝&hh, 𝑝/hh, … , 𝑝1hh)  

and 𝐽C denotes a partial derivative of 𝐽 with respect to its 𝑖�� argument, i.e., w.r.t. the ratio 𝑥Ch/𝑥Chh. 

                                                
34 Editors’ note:  It is worth noting here that this appears to be the very first time the Cobb-Douglas (1928) function 
was derived from some reasoning based on economics and index number theory, rather than being assumed a priori 
as a functional form. Olsson (1971) noted that Wicksell used the Cobb-Douglas production function as early as 1916. 
Pollak (1971) and Afriat (1972) noted the use of the Cobb-Douglas functional form in index number theory. In the 
commentary which follows our translation, we will explain the results in this section using more modern notation.    
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 Solve the above two equations for 𝐽C and then equate the resulting two expressions for 𝐽C to each 

other and we obtain the following equations for 𝑖	 = 	1, … , 𝑛   

 
𝑝Ch

𝑝Chh
× 	

1
𝜔̀(𝑝hh)

×
𝜕𝜔̀(𝑝h)
𝜕𝑝Ch

=
𝜔̀(𝑝h)

[𝜔̀(𝑝hh)]/
×
𝜕𝜔̀(𝑝hh)
𝜕𝑝Chh

 

 

Cancelling out 𝜔̀(𝑝hh) and collecting all functions containing (𝑝&h , 𝑝/h , … , 𝑝1h ) on one side and those 

containing (𝑝&hh, 𝑝/hh,… , 𝑝1hh) on the other, we get: 

 
𝑝Ch

𝜔̀(𝑝h)
×	
𝜕𝜔̀(𝑝h)
𝜕𝑝Ch

=
𝑝Chh

𝜔̀(𝑝hh)
×
𝜕𝜔̀(𝑝hh)
𝜕𝑝Chh

. 

 

Because the left-hand side can depend only on (𝑝&h , 𝑝/h , … , 𝑝1h ) and the right-hand side only on 

(𝑝&hh, 𝑝/hh, … , 𝑝1hh) and both of these series of variables do not depend on each other. Thus both of the 

expressions should be equal to a constant, i.e., for 𝑖	 = 	1, … , 𝑛, we have:  

 
𝑝C
𝜔̀(𝑝)

×	
𝜕𝜔̀(𝑝)
𝜕𝑝C

= −𝛼C, 

 

where 𝛼C is a constant magnitude, taken with the minus sign for convenience of further derivations.35 

 This relation can be written as 

 

	
𝜕 log 𝜔̀(𝑝)

𝜕𝑝C
= −

𝛼C
𝑝C
																																																												(17). 

 
Such equalities will hold for each variable 𝑝&, 𝑝/,… , 𝑝1 and from them it follows that  

 
𝑑 log 𝜔̀(𝑝) = −P

𝛼C
𝑝C
𝑑𝑝C	 

 
From which, integrating, we get: 

 
log 𝜔̀(𝑝) = −P𝛼C log 𝑝C + log 𝐶 

 

                                                
35 Editors’ note: Recall that, using a modern notation, the purchasing power of money function 𝜔(𝑝) is equal to the 
reciprocal of the price level function 𝑐(𝑝) so that 𝜔(𝑝) = 1/	𝑐(𝑝). The counterpart to (17) using the unit cost function 
is 𝜕 log 𝑐(𝑝)/ ∂𝑝C = 𝛼C/𝑝Ci. 
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where 𝐶  is a constant. Or, 

 

𝜔̀ = 𝐶𝑝&
��z𝑝/

��{ …𝑝1
��| = 𝐶/(𝑝&

�z𝑝/
�{ …𝑝1

�|) 

 

Therefore, the hypothesis (15) determines the type of the function for 𝜔̀.36 

 In the case of only two variables (𝑥& and 𝑥/), the equilibrium curves of the purchasing power of 

money represent the hyperbolic curves, depicted in Figure 1 (curves AB and others). 

 Based on the derived formula of the function of the purchasing power of money, which follows 

from the above-mentioned hypothesis, we can derive the following conclusions: 

 

(a). The share of the turnover of any good in the overall turnover of a country is a constant magnitude. 

 
Using relations (14) and (16), we obtain: 

 
𝜔̀𝛼&
𝑝&𝑞&

=
𝜔̀𝛼/
𝑝/𝑞/

= 	… =
𝜔̀𝛼1
𝑝1𝑞1

 

 

If we add to these the following identity 
 

∑ 𝜔̀𝛼CC
∑ 𝑝C𝑞CC

=
𝜔̀ ∑ 𝛼CC

𝐸
, 

 
then we get the following equations:37 

 

𝜔̀𝛼&
𝑝&𝑞&

=
𝜔̀𝛼/
𝑝/𝑞/

=	… =
𝜔̀𝛼1
𝑝1𝑞1

=
𝜔̀ ∑ 𝛼CC

𝐸
 

and therefore 
𝑝C𝑞C
𝐸

=
𝛼C
∑ 𝛼CC

																																														(18). 

 

 The constant coefficient ��
∑ ���

 can be easily determined if we know for any period of time: the quantity of 

money paid for all the goods, 𝐸�, the quantity of the transacted good 𝑞�C and its price 𝑝̅C; then: 

                                                
36 Editors’ note: This result is a powerful one which is not well known in the index number literature. In our 
commentary on the paper, we will repeat the above proof using the unit cost function for the price level function.  The 
earliest closely related result we are aware of is Eichhorn (1976) in Econometrica, which was later repeated in 
Eichhorn (1978, p. 167-168).  
37 Editor’s note: In the original, the first denominator has a typo, stating 𝑝&𝑞/ (or 𝑥&𝑎/ in their original notation). 
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𝛼C
∑ 𝛼CC

=
𝑝̅C𝑞�C
𝐸�
.																																												(19) 

 
Transforming the expression (18), [and using (19)] we get, i.e.: 

 

𝑝C =
𝐸
𝛼C
×
𝑝̅C𝑞�C
𝐸�
.																																								(20) 

 
b). The price of a good is proportional to the quantity of money paid for these goods and inversely 

proportional to the quantity of the given good. 

 
 The obtained `curve of transactions’ has a very simple form. Namely, it is a symmetric hyperbola, 

depicted in Figure 2. 

 
    𝑝C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      0    Quantity of a sold (=purchased) good           𝑞C 
          

Figure 2. The `curve of transactions’ corresponding to the geometric mean index. 
 

c). The index of the purchasing power of money is a weighted (by turnover) geometric average. 

Indeed, 

𝐽 =
𝜔̀(𝑝h)
𝜔̀(𝑝hh)

=
𝑝&
h��z𝑝/

h��{ …𝑝1
h��|

𝑝&
hh��z𝑝/

hh��{ …𝑝1
hh��| .																																	(21) 

 

And because from (19) it follows that 
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𝛼C =P𝛼C
C

𝑝̅C𝑞�C
𝐸�
, 

then transforming (21), we get: 
 

𝐽 = ���
𝑝&hh

𝑝&h
�
�̅zd�z

× �
𝑝/hh

𝑝/h
�
�̅{d�{

× …× �
𝑝1hh

𝑝1h
�
�̅|d�|�̀

�

∑ ���

. 

 

The value of the constant coefficient ∑ 𝛼CC  is determined based on the assumption, made when computing 

any of the indexes of the purchasing power of money: if all the prices increased or decreased by the same 

number then this means that the purchasing power of money decreases or increases by the same number. 

Mathematically, this means that the purchasing power of money 𝜔̀(𝑝&, 𝑝/, … , 𝑝1) is a homogeneous 

function of degree -1 with respect to 𝑝&, 𝑝/,… , 𝑝1 and, consequently, it follows that:38 

 

𝑝&
𝜕𝜔̀	
𝜕𝑝&

+ 𝑞/
𝜕𝜔̀
𝜕𝑝/

+ ⋯+ 𝑝1
𝜕𝜔̀
𝜕𝑝1

= −𝜔̀ 

Or 

𝑝&
𝜕 log 𝜔̀	
𝜕𝑝&

+ 𝑞/
𝜕 log 𝜔̀
𝜕𝑝/

+ ⋯+ 𝑝1
𝜕 log 𝜔̀
𝜕𝑝1

= −1. 

 

Using expression (17) for the logarithmic derivatives of 𝜔̀, we find that 

 
∑ 𝛼CC = 1.      (22) 

 
Therefore, we obtained a formula of the index of the purchasing power of money as a geometric mean of 

relative changes of prices of goods, weighted proportionally to the turnover of the given goods:39 

 

𝐽 = � ��
𝑝&hh

𝑝&h
�
�̅zd�z

× �
𝑝/hh

𝑝/h
�
�̅{d�{

× …× �
𝑝1hh

𝑝1h
�
�̅|d�|∑ �̀��̀��

�.																					(23) 

 
Regardless of which period’s turnover would be taken for the weights of the index: base, current or any 

other intermediate period, because, as was proven above, the share of the turnover of each product in the 

overall turnover of the country is constant.  

                                                
38 Editors’ note: Let 𝑓(𝑞) satisfy 𝑓(𝑘𝑞) = 𝑘�&𝑓(𝑞), ∀	𝑘 > 0. Differentiate both sides of this equation w.r.t 𝑘 and get 
∑ 𝑓C(𝑘𝑞)𝑞C = −𝑘�/𝑓(𝑞)1
CD& .  Evaluating this equation at 𝑘 = 1 gives us ∑ 𝑓C(𝑞)𝑞C1

CD& 	= 	-𝑓(𝑞). 
39 Editors’ note: A reader familiar with the price index theory will recognize that this is the classic Cobb-Douglas price 
index; e.g., see Pollak (1971) or Afriat (1972). 
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 Based on Section 5, it is easy, conversely, to make the following conclusion: an index calculated 

using a geometric mean, weighted by the turnover share, assumes that the quantities of transacted goods 

change counter-proportionally to the prices and proportionally to the quantity of money paid for all the 

goods. 

 
d). It is not difficult to derive an equation determining the purchasing power of money as a function of the 

quantities of goods and money, exchanged for each other: 

 

𝜔 = 𝐶 �
𝑞&
𝑝̅&𝑞�&

 
�̅zd�z
v� × �

𝑞/
𝑝̅/𝑞�/

 
�̅{d�{
v� × …× �

𝑞1
𝑝̅1𝑞�1

 
�̅|d�|
v� ×

𝐸�
𝐸
.															(24) 

 
This equation establishes that an index of the `volume of trade’ is equal to a weighted geometric mean of 

the relative changes of quantities of transacted goods, weighted according to the turnover. 

 Considering the just obtained conclusions, we cannot pinpoint any contradictions to reality in them. 

We note, first of all, that from equation (16), which defines the formula for the function of the purchasing 

power of money in this section, it follows that if the price of any good turns into zero, then the purchasing 

power of money goes to infinity; if, conversely, the price of any good goes to infinity, then the purchasing 

power of money goes to zero. This consequence is consistent with the initial assumption that the `utility of 

goods and techniques of their production do not change’, since the latter excludes the possibility of the price 

turning to zero or going to infinity.40 

 The most interesting result is the provision that the weighted by turnover geometric mean form of 

the index entirely follows on from an almost obvious (especially from the perspective of the index number 

methodology) assumption: a relative change of the purchasing power of money is determined by the relative 

changes in prices. The law of the turnover of goods, which is assumed with the geometric mean index: ‘the 

share of the turnover of each good in the overall turnover of a country is constant’ can find some support 

in statistical-economic studies, if not with respect to some goods, then, at least with respect to key groups 

of goods.41 Therefore, the geometric mean gives correct results for determining the changes of the 

purchasing power of money only in such cases when there are no strong perturbations in utilities from 

goods, in the techniques of their production and in the structure of the entire economy. Given the latter, it 

                                                
40 Editors’ note: Alternatively, this problem can be circumvented by introducing an assumption that consumers stop 
buying the product if its price is infinity, which will make the share of that product be zero and so it will cancel the 
infinite-price by turning it into 1 (with the convention: ∞) = 1). Similarly, we can adopt the convention that 0¢ = 1. 
41 E.g., V.G. Groman in the article “On some empirical dependencies unveiled in our economy”, based on the analysis 
of statistical information for 1913, 1922, 1923 and 1924, asserts that “the shares of the value of agricultural and 
industrial goods to all the goods has a tendency of approaching to pre-war shares (37% and 63%).” See Planovoe 
Hozyaistvo (Planned Economy), Moscow, 1925, No.1 and 2. 
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is worth pointing out that during periods of high inflation, the geometric mean index (as with any other 

index) will indicate the changes of the purchasing power of money incorrectly. 

 We also note that we think it is incorrect to follow a commonly practiced method of calculating the 

geometric mean indexes from month to month with fixed weights. The shares of the turnover of some goods 

are substantially changing across seasons and therefore it is only possible to calculate the index once per 

year: by comparing the month of the current year to the corresponding month of the previous year, and by 

weighting the index for each month according to the turnover shares of the same month in the base period. 

The ratio of the two indexes calculated this way for two months of the same year will give us an index with 

the base in the first month, which will be free from seasonal effect. This is justified, of course, only in such 

a case, if during all the months of the base years, the purchasing power of money remains constant.42 

 

9. The `ideal’ index formula of I. Fisher. 
 

Professor Irving Fisher in his work dedicated to price indexes “The Making of Index Numbers”43, based on 

a series of considerations, proposed the following formula for the purchasing power of money as the best 

one: 

 

𝐽 = �
(𝑞&hh𝑝&hh + 𝑞/hh𝑝/hh + ⋯+ 𝑞1hh	𝑝1hh)(𝑞&h 𝑝&hh + 𝑞/h 𝑝/hh + ⋯+ 𝑞1h 	𝑝1hh)
(𝑞&hh𝑝&h + 𝑞/hh𝑝/h +⋯+ 𝑞1hh	𝑝1h )(𝑞&h𝑝&h + 𝑞/h 𝑝/h + ⋯+ 𝑞1h 	𝑝1h )

											(25) 

 
where  

𝑞&h , 𝑞/h , … , 𝑞1h 	 - quantities of goods transacted in the first period, 

𝑝&h , 𝑝/h , … , 𝑝1h 	 - prices of goods in the first period, 

𝑞&hh, 𝑞/hh, … , 𝑞1hh	 - quantities of goods transacted in the second period, 

𝑝&hh, 𝑝/hh, … , 𝑝1hh	 - prices of goods in the second period. 

 

This formula, called by Fisher as ‘ideal’ is a geometric mean of two aggregative indexes, where one is 

weighted by the quantities of goods transacted in the base period and the other by the quantities of goods 

transacted in the current period.44 

                                                
42 Editors’ note: It is worth noting that this quite reasonable advocacy of the year over year monthly indexes when 
there is seasonality in the data is probably the first in this literature that uses mathematical and economic theory 
arguments to justify such an approach. 
43 In Russian, there is a translation of the concluding chapter of this work and a concise synopsis of the other chapters 
made by F.D. Lifshitz. See Vestnik statistiki, 1925, No 7-9. 
44 The Fisher ideal price index is the geometric mean of the Laspeyres (1871) and Paasche (1874) price indexes. 
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 As we can see, coefficients 𝑞 in the `ideal’ formula are variable quantities, because they are 

changing both with the change in the base period and with the change of the current period. Therefore, for 

the determination of the functional form of the purchasing power of money, we cannot directly use the 

method that was outlined above in the case of the aggregative index. Let us first make a few transformations 

of the formula (25), and then work out which functional form of the purchasing power of money 

corresponds to it and which form of dependency should exist between prices and quantities of transacted 

goods. 

 When the purchasing power of money does not change, its index equals 1.  Thus this condition 

implies the following equation: 

 

1 = �
∑𝑝hh𝑞hh

∑𝑝h𝑞hh
×
∑𝑝hh𝑞h

∑𝑝h𝑞h
 

or 
∑𝑝hh𝑞hh

∑𝑝h𝑞h
=
∑𝑝h𝑞hh

∑𝑝hh𝑞h
.																																																	(26) 

 
It is assumed as a condition that the purchasing power of money that exists in one period of time is equal 

to the purchasing power of money that exists in another period of time. 

 Equation (26) was already considered by us in the context of the theory of indexes for the cost of 

living. It was a condition of approximate equality of the living standards in two different periods of time.45 

It can be shown that in this context, if equation (26) holds, then the purchasing power of money in the two 

periods of time is approximately the same. Or, more precisely: if the turnover of one period of time is related 

to the turnover in another period of time in the same way as the monetary value of the goods of the first 

period, calculated according to prices of the second period, is related to the monetary value of the goods 

of the second period, calculated according to prices of the first period, then the possible deviations of the 

purchasing power of money in one period of time from the purchasing power in the other period are 

bounded in between some limits. 

                                                
45 Konus A.A. (1924) “The Problem of the True Cost of Living Index,” Economic Bulletin of the Conjuncture Institute 
No. 9-10.  In this work, it was proven that the true cost of living index is bounded in between the two budget indexes, 
one of which is weighted according to the norms of consumption in the base period and the other according to the 
norms of consumption in the current period. With the help of similar considerations, it follows that the true index of 
the purchasing power of money is bounded in between the two aggregative indexes, one of which is weighted 
according to the national turnover in the base period and the other according to the national turnover in the current 
period. In such a case, the geometric mean of these two indexes will be bounded between the same limits as the true 
index. And, the geometric mean of the two aggregative indexes is exactly the `ideal formula’ for the index of Irving 
Fisher. Editors’ note: This is a new result which was not in Konüs (1924); i.e., under the assumption of homothetic 
preferences, the true cost of living is bounded from above by the Laspeyres and bounded from below by the Paasche 
index. Note that the key new hypothesis here is the linear homogeneity assumption for the utility function. 
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 Assuming that the “ideal formula” of the index of Irving Fisher shows the relative changes in the 

purchasing power of money not just approximately but exactly, we can consider equation (26) as the 

differential equation of the manifold of equilibrium of the purchasing power of money (hypersurface 

𝜔̀(𝑝&, 𝑝/,… , 𝑝1) = 𝑐𝑜𝑛𝑠𝑡). 

 This equation, in combination with the obvious assumption that we already made above—if all 

prices simultaneously increase or decrease by the same proportion then this means that the purchasing 

power of money decreases or increases by the same proportion—allows us to find the following functional 

form for the purchasing power of money:  

 

𝜔̀(𝑝&, 𝑝/, … , 𝑝1) =
1

£∑ ∑ 𝐶Cm𝑝C𝑝mCm
																																											(27) 

 
where 𝐶Cm are constant coefficients such that 𝑖 and 𝑘 are indicating the particular goods.46 

 In conclusion, the representation for 𝜔̀(𝑝&, 𝑝/,… , 𝑝1) given by (27), follows from the following 

arguments. 

 Based on equations (14), and applying the assumptions and notation laid out above [in section 8], 

the condition (26) can be written in the following form47 

 
∑ 𝜕𝜔̀(𝑝hh)

𝜕𝑝Chh
𝑝ChhC

∑ 𝜕𝜔̀(𝑝h)
𝜕𝑝Ch

𝑝ChC

=
∑ 𝜕𝜔̀(𝑝hh)

𝜕𝑝Chh
𝑝ChC

∑ 𝜕𝜔̀(𝑝h)
𝜕𝑝Ch

𝑝ChhC

																																																									(26h) 

 
which is a differential equation with partial derivatives and mixed variables.48  For the sake of a more 

concise notation, make the following definitions: 

 

P
𝜕𝜔̀(𝑝hh)
𝜕𝑝Chh

𝑝Chh

C

= 𝑃hh;																										P
𝜕𝜔̀(𝑝h)
𝜕𝑝Ch

𝑝Ch

C

= 𝑃h									(a) 

 
Using this notation, equation (26’) can be written as follows: 
 

                                                
46 Editors’ note: This result inspired the work of Diewert (1976), who adapted the proof below to families of functional 
forms for utility functions and unit cost functions and the corresponding families of index number formulae that were 
exact for the given functional forms. His functional forms include the special case considered by Konüs and 
Byushgens.  
47 Editors’ note: This is where the authors use their equations (14) derived in section 6. Thus, they substituted the 
equations 𝑞Ch 	= 	𝑘h𝜔̀C(𝑝h) and 𝑞Chh 	= 	 𝑘hh𝜔̀C(𝑝hh) into equations (26) in order to obtain equations (26′). The constants 
𝑘h and 𝑘hh cancel out.  
48 On the solution of this equation, see also Buscheguennce S.S. (1926), “Sur une classe des hypersurfaces,” Matemat. 
sbornik v.32. Editors’ note: It is worth noting that this result and this same paper is also utilized in the already 
mentioned discussion of the earlier paper of Konüs (1924) by Schultz (1939; 8-9). 
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P𝑃hh × 𝑝Chh ×
𝜕𝜔̀(𝑝h)
𝜕𝑝ChC

=P𝑃h × 𝑝Ch ×
𝜕𝜔̀(𝑝hh)
𝜕𝑝ChhC

																								(b) 

 
In this last relation, which must hold as an identity, for all values of 𝑝&h , 𝑝/h , … , 𝑝1h  and 𝑝&hh, 𝑝/hh,… , 𝑝1hh, 

we can assign any values to the variables of one of these groups and then every time we will obtain, for the 

function of the other group of variables, the relations with constant coefficients. 

 It is known that if in the equation of the type (b) with mixed variables for the function of one of the 

group of variables one assumes the existence of 𝑚 of linear relations with constant coefficients, then for 

the function of the other group of variables, there necessarily will exist 2𝑛 − 𝑚  of linear relations with 

constant coefficients. 49  In our case, both series  

 

𝑃h𝑝&h , 𝑃h𝑝&h ,… , 𝑃h𝑝&h ,
𝜕𝜔̀(𝑝h)
𝜕𝑝Ch

, … ,
𝜕𝜔̀(𝑝h)
𝜕𝑝Ch

,																																					(c) 

 

𝑃hh𝑝&hh, 𝑃hh𝑝&hh,… , 𝑃hh𝑝&hh,
𝜕𝜔̀(𝑝hh)
𝜕𝑝Chh

, … ,
𝜕𝜔̀(𝑝hh)
𝜕𝑝Chh

,																													(ch) 

represent, in essence, the same functions, just different in their notation of variables, and so for the functions 

of one or the other series, we can allow an equal number of linear relations, i.e., 𝑚 = 2𝑛 −𝑚 or 𝑚 = 𝑛.  

Thus, the functions of the series (c) can be connected by only 𝑛 linear relations with constant coefficients; 

these relations can be assumed as solved with respect to the last 𝑛 functions of the series (c), in the form 

of:50 

 
𝜕𝜔̀(𝑝h)
𝜕𝑝mh

=P𝐴mC𝑃h𝑝Ch

C

																																							(d) 

 
where 𝐴mC are constant coefficients.  Inserting these values ¨©̀ª�

«¬
¨�­

«  into relation (b) and requiring that (b) 

holds as an identity with respect to 𝑃h𝑝&h , 𝑃h𝑝/h ,… , 𝑃h𝑝1h , we obtain: 

 
¨©̀ª�««¬
¨�­

«« = ∑ 𝐴Cm𝑃hh𝑝ChhC 																																																	(d′)   

Because relations (d) and (d¢), related to the corresponding same functions, must be equivalent, then it is  

necessary that 

 
𝐴Cm = 𝐴mC      (e) 

 

                                                
49 Editors’ note: In the original, the authors use 𝑝 instead of 𝑚. 
50 Editors’ note: The original had an apparent typo: used 𝜕𝑝̅m in our notation (or 𝜕𝑥̅m in their notation). 
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Let us now insert the values of derivatives  ¨©̀ª�
«¬

¨�­
«    into the second of formula displayed in (a). Then 

dropping the upper indexes in the variables 𝑝&h , 𝑝/h , … , 𝑝1h , we get: 

 
∑ 𝐴Cm𝑝m𝑝CCm = 1 .     (28) 

 
The obtained relation is not an identity, and thus it will be a necessary condition of feasibility of (b). The 

object of interest for us is the manifold 𝜔̀ = 𝐶𝑜𝑛𝑠𝑡,  consisting of one parameter, and so we must assume 

that in equation (28) the coefficients 𝐴  are the functions of one parameter and then equation (26’) is satisfied 

by the following solution: 

  
𝜔̀ = 𝐹(𝑡)      (29) 

 
where 𝐹(𝑡) is any function and 𝑡  is determined from equation (28), where the coefficients 𝐴Cm are arbitrary 

functions of parameter 𝑡 and satisfy, conditionally, the symmetry conditions (e). 

 

 
    𝑝C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      0                    𝑝& 
           Price good 1 
 
Figure 3. Curves of equilibrium purchasing power of money corresponding to the index of Irving Fisher. 

 

The obtained solution characterizes the manifold of equilibrium of the purchasing power of money, 

because when 𝜔̀ = 𝑐𝑜𝑛𝑠𝑡. Then 𝑡 = 𝑐𝑜𝑛𝑠𝑡 and the equation will have constant coefficients; and in such a 

case it will characterize the manifold of the second degree (a conicoid) with a center at the origin of the 

coordinate system. However, this solution contains a series of arbitrary functions and thus condition (26) 
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alone is not sufficient for the final determination of the functional form of the purchasing power of money, 

𝜔̀. 

 We now introduce the above-mentioned assumption, which is typically stated when computing any 

price index, namely that  𝜔̀(𝑝&, 𝑝/, … , 𝑝1) is a homogeneous function of degree -1, with respect to all its 

variables 𝑝&, 𝑝/,… , 𝑝1. This assumption will fully determine the form of the function 𝜔̀. 

 

Indeed, the homogeneity condition will be: 

 

P𝑝¯h ×
𝜕𝜔̀(𝑝)
𝜕𝑝¯¯

= −𝜔̀.																																																							(30) 

 

Let us differentiate equations (29) and (23) with respect to any variable 𝑥C, then: 

 
𝜕𝜔̀(𝑝)
𝜕𝑝C

= 𝐹h(𝑡)
𝜕𝑡
𝜕𝑝C

 

 

2P𝐴Cm𝑝m
m

+ OP𝐴Cmh 𝑝C𝑝m
C,m

R
𝜕𝑡
𝜕𝑝C

= 0 

 

where 𝐴Cmh  denotes the derivative of 𝐴Cmh  with respect to 𝑡.  From the above equations, we find the derivatives  
¨©̀(�)
¨��

 : 

 
𝜕𝜔̀(𝑝)
𝜕𝑝C

= −2𝐹h(𝑡)
∑ 𝐴Cm𝑝mm
∑ 𝐴Cmh 𝑝C𝑝mC,m

 

 

And we can insert them into (30), and therefore obtain the following equation:  
 

P𝐴Cmh 𝑝m𝑝C
Cm

=
2𝐹h(𝑡)
𝐹(𝑡)

. 

 
This last relation must be equivalent to relation (28) and therefore their corresponding coefficients must be 

proportional. Therefore, for all values 𝑖 and 𝑘 (running from 1 to 𝑛): 

 
𝐴Cmh

𝐴Cm
=
2𝐹h(𝑡)
𝐹(𝑡)

 

 
Integrating these equations, gives us 
 

𝐴Cm = 𝐶Cm[𝐹(𝑡)]/ 
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where 𝐶Cm are constant coefficients satisfying the condition of symmetry: 

 
𝐶Cm = 𝐶mC . 

 
If the derived expressions (31) for coefficients 𝐴Cm are inserted to equation (28), then we obtain the 

following function for the purchasing power of money: 

 

𝜔̀ = 𝐹(𝑡) =
1

£∑ 𝐶Cm𝑝C𝑝mm,C
.																																																	(27′) 

 
The hypersurface of the prices that generate the same level for the purchasing power of money is a 

hypersurface of the second degree with the center at the origin of the coordinate system. In the case of two 

variables (𝑝& and 𝑝/), the curve of the equilibrium of the purchasing power of money, depicted in Figure 3, 

is a hyperbola with its center at the origin of the coordinate system. In this case, the function of the 

purchasing power of money will be  

 

𝜔̀(𝑝&, 𝑝/) =
1

£𝐶&&𝑝&/ + 2𝐶&/𝑝&𝑝/ + 𝐶//𝑝//
 

 
and, therefore, the equation of the curve of the equilibrium will be  

 
𝐶&&𝑝&/ + 2𝐶&/𝑝&𝑝/ + 𝐶//𝑝// = 𝑐𝑜𝑛𝑠𝑡. 

 
Based on equations (27) and (14), we will obtain the following expression for the purchasing power of 

money: 

𝜔 =
°∑ ∑ 𝐶¯±𝑞¯𝑞±±¯

𝐸
																																							(32) 

 
where 𝐶¯±  are constant coefficients while 𝑚 and 𝑗 are indicators of particular goods. 

 The price of a good 𝑘, expressed as a function of quantities of transacted goods and the money paid 

for them, is the following expression: 

 

												𝑝m =
𝐸 × ∑ 𝐶¯m𝑞¯¯
∑ ∑ 𝐶¯±𝑞¯𝑞±±¯

																																										(33) 

 
where 𝐶¯m are constant coefficients, while 𝑘,𝑚, 𝑗 are indicators of particular goods.51 

                                                
51 Editors' note: The authors appear to have defined the parameters 𝐶¯±	as the elements of the inverse of the original 
matrix of coefficients 𝐶Cm; see the Commentary for the derivation of this result. Equations (33) are the system of 
inverse demand functions generated by their functional form for the unit cost function. The numerator on the right-
hand side of (32) defines the purchaser’s direct utility function. Equations (34) are the purchaser’s system of direct 
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 If we consider that the quantities of all the goods, except for one, do not change, then the price of 

this good will be the following function of its quantity (the equation of the curve of transaction): 

 

𝑝m =
𝐸(𝐵&𝑎m + 𝐵/)

𝐵³𝑎m/ + 𝐵´𝑎m + 𝐵µ
 

 
where 𝐵&, 𝐵/, … , 𝐵µ are constant coefficients. 

The quantity of goods as a function of prices of goods and the quantity of money paid for all these goods, 

is determined by the following equation, analogous to (33): 

 

𝑞¯ =
𝐸∑ 𝐶¯C𝑝CC
∑ ∑ 𝐶Cm𝑝C𝑝mmC

.																																																												(34) 

 
The “ideal” formula of the index of the purchasing power of money, proposed by Irving Fisher, contains, 

as was described above, variable coefficients. Now we can, based on the obtained form of the function of 

the purchasing power of money (27), obtain the formula of the same index with constant coefficients. 

 

𝐽 =
𝜔̀(𝑝&h , 𝑝/h , … , 𝑝1h )
𝜔̀(𝑝&hh, 𝑝/hh,… , 𝑝1hh)

= �
∑ ∑ 𝐶Cm𝑝Chh𝑝mhhmC
∑ ∑ 𝐶Cm𝑝Ch𝑝mhmC

	.																																	(35) 

 
The coefficients in this formula cannot be obtained through determining the quantities of transacted goods 

and prices in one period of time, as it was in the case of aggregative and geometric mean indexes. These 

coefficients can be found with the help of equations connecting the quantities of goods with prices, based 

on data for (𝑛 + 1)/2 of periods of time for the case of 𝑛 goods.52 

 Therefore, the “ideal” formula leads to a complex form of the index and a complex form of 

dependency between prices and quantities of goods. Consequently, the statistical testing of these 

dependencies appears to be difficult. The difficulty of such testing is magnified by the condition of the 

constancy of the overall structure of the economy, because without this condition the “ideal” formula 

incorrectly represents the changes of the purchasing power of money. The failure of the constancy 

                                                
demand equations. (35) defines the purchaser’s price index as the ratio of two unit cost functions or price levels. Note 
that the right-hand side of (35) cannot be expressed in terms of the relative prices, 𝑝Chh/𝑝Ch for 𝑖	 = 	1,… , 𝑛 so we cannot 
apply the result in the previous section.  
52 Editors’ note: Thus, the authors realized that a large data set is required in order to estimate their quadratic functional 
form that was exact for the Fisher ideal index. Indeed, a parsimonious flexible functional form requires 𝑛(𝑛 + 1)/2 
free parameters. For some recent attempts to estimate the KBF functional form, see Diewert and Feenstra (2019) 
(2022). The systems of estimating equations, (33) and (34), that were suggested by Konüs and Byushgens are used in 
the papers by Diewert and Feenstra.  
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assumption can be proven by the unacceptability of the so-called “chaining method” (or, according to 

Fisher, the failure of the “circularity test”), as confirmed by Irving Fisher himself.53 

 The advantages of the “ideal” formula relative to others, Fisher sees in the satisfaction of the two 

main tests of suitability of indexes (time reversal test and factor reversal test) proposed by him.  It is not 

difficult to see that the considerations outlined in this article, are mathematically consistent with the 

satisfaction of the tests he proposed. However, it is worth noting that the aggregative index and the 

geometric mean index also pass these tests if it is only assumed that the transaction of goods proceeds 

according to the same laws that are assumed by these indexes. 

 We believe that currently there are only two indexes deserving attention and competing between 

each other to measure the purchasing power of money—the “ideal” index and the geometric mean index.54 

Deciding on which of them is more suitable appears to be impossible without an accurate statistical study. 

      A.A. Konüs and S.S. Byushgens. 

 

 

 

 

  

                                                
53 Editors’ note: The authors are referring to the chain drift problem; i.e., if Fisher indexes are chained and a final 
period is introduced that has prices and quantities that are identical to those of the first period, then typically, chained 
indexes will fail to show no price change going from the first period to the final (artificial) period. For recent material 
on the chain drift problem, see Diewert (2018).  
54 This remark should be also applied to the cost-of-living indexes, for which one may present discussions analogous 
to those developed in this paper. 
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APPENDICES 
 

Appendix A: Commentary 

 

Some of the arguments and proofs of Konüs and Byushgens are not easy to follow. This is understandable 

since they were developing many totally new concepts and the implications of optimizing behavior were 

not well understood at the time when they wrote their paper.55 Thus in what follows, we will provide 

derivations and alternative proofs for many of their results using the now standard tools of microeconomic 

theory. 

 

We follow the authors’ Section 1 analysis and assume that the purchasing power of money function, 

𝜔(𝑞, 𝐸), is defined as follows: 

 

   𝜔(𝑞, 𝐸) = 	𝑓(𝑞)/𝐸     (A1) 

 

where 𝑞 = (𝑞&, 𝑞/, … , 𝑞1) is a nonnegative consumption vector, 𝑓 is the purchaser’s utility function and 

𝐸	 > 	0 is total expenditure on commodities during the period under consideration. The authors also 

introduce 𝑃 as “the magnitude that is inverse to the purchasing power of money”, which they later identify 

as the price level. Since 1/𝑃 is equal to 𝜔(𝑞, 𝐸) and 𝐸 is equal to 𝑝 ∙ 𝑞 ≡ ∑ 𝑝C𝑞C1
CD& , the inner product of 

the vectors 𝑝 and 𝑞, we see that the Konüs and Byushgens price level function	𝑃(𝑝, 𝐸) can be defined as:56 

 

   𝑃(𝑞, 𝐸)	º	𝐸/𝑓(𝑞) 	= 	𝑝×𝑞/𝑓(𝑞).    (A2) 

 

We now turn to our explanations for several of the results of Konüs and Byushgens. 

 

Justification for equations (7) in Section 1: 

 

Suppose that 𝑞∗ is a strictly positive consumption vector which solves the following utility maximization 

problem: 

 

    max
d
	{𝑓(𝑞) ∶ 	𝑝 ∙ 𝑞	 = 	𝐸; 	𝑞	 ≥ 	 01}.   (A3) 

                                                
55 In particular, the implications of optimizing behavior developed by Hicks (1946) and Samuelson (1947) were not 
available to them.  
56 Diewert (2020b) used precisely this definition for the price level when he developed alternative approaches to the 
problem of quality adjustment.  
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Assuming that 𝑓(𝑞) is differentiable, increasing and concave, then the following 𝑛 + 1 Lagrangian first 

order conditions will characterize an interior solution to the constrained utility maximization problem (A2):  

 

   ∇𝑓(𝑞∗) = 𝜆∗𝑝;       (A4) 

 

   𝑝 ∙ 𝑞∗ 	= 	𝐸      (A5) 

 

where ∇𝑓(𝑞∗) ≡ ¸¨u(d
∗)

¨dz
, … ¨u(d∗)

¨d|
¹ ≡ [𝑓&(𝑞∗), … , 𝑓1(𝑞∗)] is the vector of first order partial derivatives of 

𝑓(𝑞∗).57  Take the inner product of both sides of equations (A4) with the price vector 𝑝 and solve the 

resulting equation for 𝜆∗. Use equation (A5) to replace 𝑝 ∙ 𝑞∗ by 𝐸. Substitute this solution for 𝜆∗ back into 

equations (A4) and we obtain the following system of inverse demand equations:  

 

  𝑝C = 𝐸𝑓C(𝑞∗)/∑ 𝑓±(𝑞∗)𝑞±∗1
±D& ,     𝑖	 = 	1, … , 𝑛.    (A6) 

 

Konüs and Byushgens later assume that the utility function 𝑓(𝑞) is linearly homogeneous so that 𝑓(𝑘𝑞) 	=

	𝑘𝑓(𝑞) for all scalars 𝑘	 > 	0; see their equation (8). Euler’s Theorem on homogeneous functions implies 

that 𝑓(𝑞∗) = 𝑞∗ ∙ ∇𝑓(𝑞∗) = ∑ 𝑓±(𝑞∗)𝑞±∗1
±D& . Thus, when 𝑓(𝑞) is linearly homogeneous, equations (A6) 

become the following equations:58  

 

  𝑝C 	= 	𝐸𝑓C(𝑞∗)/𝑓(𝑞∗),   𝑖	 = 	1, … , 𝑛.     (A7) 

 

Having established equations (A7), using (A1) (i.e., 𝜔(𝑞, 𝐸) 	= 	𝑓(𝑞)/𝐸)) and performing the 

differentiation in equations (7) in the main text: We find that 

                                                
57 Conditions (A4) are equivalent to the authors’ conditions (14). Thus, the authors are definitely using the implications 
of maximizing a linearly homogeneous utility function subject to a budget constraint in their derivations. 
58 The authors’ equations (33) are a special case of this system of equations. This system of inverse demand functions 
proves to be very useful when estimating preferences in situations where there is product churn; i.e., over time, many 
new products appear and many older products disappear. This situation creates difficulties for statistical agencies that 
are asked to construct consumer price indexes under these circumstances. The advantage of the system of inverse 
demand functions in this situation is that it is easy to set 𝑞C� equal to 0 if product 𝑖 is missing in period 𝑡 and then drop 
the corresponding equation 𝑝C� 	= 	𝐸�𝑓C(𝑞�)/𝑓(𝑞�)  from the estimating equations (because when product 𝑖 is missing 
in period 𝑡, there is no corresponding observed price). Hicks (1940) introduced the concept of a reservation price; it 
is the price which would induce the purchaser to consume 0 units of the missing product if it were available. Once the 
utility function 𝑓(𝑞) has been estimated, then the missing reservation price 𝑝C�  can be estimated as 𝐸�𝑓C(𝑞�)/𝑓(𝑞�). 
For explanations of this methodology and some applications, see Diewert (2020b) and Diewert and Feenstra (2019) 
(2022). 
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𝑝C(𝑞, 𝐸) ≡ 	-

𝜕𝜔(𝑞, 𝐸)
𝜕𝑞C

𝜕𝜔(𝑞, 𝐸)
𝜕𝐸

= 	-
𝑓C(𝑞)
𝐸

-𝑓(𝑞)
𝐸/

=
𝑓C(𝑞)𝐸
𝑓(𝑞)

																																								(A8) 

 

for 𝑖	 = 	1, … , 𝑛 and 𝑞 = 𝑞∗, which is the same system of inverse demand functions as equations (A7).  

Thus, we have provided sufficient conditions to justify equations (7) in the authors’ text.  

 

 

Interpretation of Equations (9) and (10) in Section 4: 

 

Using footnote 14 in the main text, we know that 𝐸 = 𝑐(𝑝)𝑓(𝑞) = 𝑐(𝑝)𝑢 where 𝑢 is the purchaser’s utility 

level. Using Shephard’s Lemma (1953; 11), the purchaser’s system of Hicksian demand functions59 is given 

by 𝑞C = 𝑢[𝜕𝑐(𝑝)/𝜕𝑝C] for 𝑖	 = 	1, … , 𝑛. The indirect utility function is 𝑢 = 𝐸/𝑐(𝑝). Substituting the indirect 

utility function into the Hicksian demand functions gives us the purchaser’s system of market demand 

functions: 

 

𝑞C = [𝜕𝑐(𝑝)/𝜕𝑝C]𝐸/𝑐(𝑝) for 𝑖	 = 	1, … , 𝑛.     (A9) 

 

Thus, we have 𝑞C/𝐸 = [𝜕𝑐(𝑝)/𝜕𝑝C]/𝑐(𝑝) for 𝑖	 = 	1, … , 𝑛 which are equations (9) in the main text. Thus, 

the functions 𝑓C(𝑝&, … , 𝑝1) on the right-hand sides of equations (9) are equal to [𝜕𝑐(𝑝)/𝜕𝑝C]/𝑐(𝑝) for 𝑖	 =

	1, … , 𝑛.  

 

Equation (10) in the main text defines the reciprocal of the purchaser’s unit cost function; i.e., the 

purchasing power of money function is defined as follows: 

 

𝜔(𝑞, 𝐸) ≡
𝑓(𝑞)
𝐸

=
𝑓(𝑞)

𝑐(𝑝)𝑓(𝑞)
=

1
𝑐(𝑝)

≡ 𝜔̀(𝑝)																																		(A10) 

 

Fisher (1911) and the authors defined the purchaser price level function, 𝑃(𝑞, 𝐸), as the reciprocal of the 

purchasing power of money function, 𝜔(𝑞, 𝐸). Thus, under the assumption of utility maximizing behavior 

when the utility function is linearly homogeneous, we have: 

                                                
59 See Hicks (1946; 311-331). 
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𝑃(𝑞, 𝐸) ≡
1

𝜔(𝑞, 𝐸)
=

𝐸
𝑓(𝑞)

=
𝑐(𝑝)𝑓(𝑞)
𝑓(𝑞)

= 𝑐(𝑝)																														(A11) 

  

Thus, the price level function 𝑃(𝑞, 𝐸) is equal to the unit cost function 𝑐(𝑝) that is dual to the linearly 

homogeneous utility function 𝑓(𝑞). The unit cost function 𝑐(𝑝) is a non-decreasing, nonnegative, concave 

and linearly homogeneous function and thus has the same mathematical properties as 𝑓(𝑞).60 

 

Discussion of the Section 6 constrained optimization problem  

involving 𝜔̀(𝑝) = 1/𝑐(𝑝) 

 

Suppose 𝑓(𝑞) is a continuous, non-decreasing, concave, linearly homogeneous utility function that is 

positive if 𝑞 is strictly positive. As was indicated in an earlier editors’ note, the unit cost function 𝑐(𝑝) that 

is dual to the utility function 𝑓(𝑞) is defined for 𝑝 ≥ 	01  as: 

 

𝑐(𝑝) ≡ mind	{𝑝 ∙ 𝑞 ∶ 	𝑓(𝑞) ≥ 1	; 	𝑞	 ≥ 	 01}.   (A12) 

 

Using duality theory (e.g., see Diewert (1974; 119)), it can be shown that the utility function 𝑓(𝑞) can be 

recovered if the unit cost function is known. In particular, we have the following expression for 𝑓(𝑞∗) in 

terms of 𝑐(𝑝) where 𝑞∗ ≥ 01:  

 

  𝑓(𝑞∗) = max»¼)	{𝑢 ∶ 	𝑢𝑐(𝑝) ≤ 𝑝 ∙ 𝑞∗	; 	for	every	𝑝 ≥ 01}  

 

= max»¼)	{𝑢 ∶ 	𝑢𝑐(𝑝) ≤ 1	; 	for	every	𝑝 ≥ 01	such	that	𝑝 ∙ 𝑞∗ = 1}  

            (since 𝑢𝑐(𝑝) and 𝑝	×	𝑞∗ are both linearly homogeneous in 𝑝, we can normalize the 

                                   prices 𝑝 so that 𝑝 ∙ 𝑞∗ = 1) 

 

= max»¼)	{𝑢 ∶ 	𝑐(𝑝) ≤ 1/𝑢	; 	for	every	𝑝 ≥ 01	such	that	𝑝 ∙ 𝑞∗ = 1}  

 

= min�	{	1/𝑐(𝑝) 	 ∶ 		𝑝 ≥ 01	and	𝑝 ∙ 𝑞∗ = 1}  

 

                                                
60 See Diewert (1974) for a proof of these results.  
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= 1/max�	{	𝑐(𝑝) 	 ∶ 		𝑝 ≥ 01	and	𝑝 ∙ 𝑞∗ = 1}.61   (A13) 

 

Thus 𝑐(𝑝)	attains a maximum with respect to 𝑝 under the constraint 𝑝 ∙ 𝑞∗ = 1. Since 𝜔̀(𝑝) = 1/𝑐(𝑝) and 

𝑐(𝑝) 	> 	0, it can be seen that 𝜔̀(𝑝)	attains a minimum with respect to 𝑝 under the constraint 𝑝 ∙ 𝑞∗ = 1.  

 

Derivation of the Cobb Douglas price index in section 8 using unit cost functions. 

 

Assumption (15) made by the authors can be replaced by the following equivalent assumption (A14) where 

we have replaced the purchasing power of money function, 𝜔̀(𝑝), by 𝑐(𝑝) = 1/𝜔̀(𝑝) where 𝑐(𝑝) is the 

purchaser’s unit cost function: 

 

											
𝑐(𝑝hh)
𝑐(𝑝h)

= 𝐽 �
𝑝&hh

𝑝&h
,
𝑝/hh

𝑝/h
, … ,

𝑝1hh

𝑝1h
�																																																(A14) 

 

Let 𝐽C denote the partial derivative of 𝐽 x�z
««

�z«
, … , �|

««

�|«
y with respect to its 𝑖�� argument, ��

««

��
«  for 𝑖	 = 	1, … , 𝑛. 

We assume that the first order partial derivatives of 𝑐(𝑝) and 𝐽 x�z
««

�z«
, … , �|

««

�|«
y exist. Partially differentiate both 

sides of (A14) with respect to 𝑝Chh and we obtain an expression for  𝐽C. Partially differentiate both sides of 

(A14) with respect to 𝑝Ch and we obtain another expression for  𝐽C. Equate these two expressions for 𝐽C and 

after some simplification, we obtain the following expressions for each 𝑖: 

 

											
𝑝Chh𝑐C(𝑝hh)
𝑐(𝑝hh)

=
𝑝Ch𝑐C(𝑝h)
𝑐(𝑝h)

,														𝑖 = 1,… , 𝑛.																					(A15) 

 

Equations (A15) hold for all positive price vectors 𝑝h and 𝑝hh. Thus, for each 𝑖, each side of equation 𝑖 in 

equations (A15) must be equal to a non-negative constant, say 𝛼C for 𝑖	 = 	1, … , 𝑛. The resulting equations 

are equivalent to the following equations which must hold for all strictly positive price vectors 𝑝: 

 

											
𝜕 ln 𝑐(𝑝)
𝜕𝑝C

=
𝛼C
𝑝C
,														𝑖 = 1,… , 𝑛.																															(A16) 

 

                                                
61 This formula for 𝑓(𝑞∗) was derived by Diewert (1976; p. 134). 
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Equations (A16) constitute a simple system of partial differential equations which have the following 

solution:62  

 

											ln 𝑐(𝑝) = 𝐶 + 𝛼& ln 𝑝& +⋯+ 𝛼1 ln 𝑝1 																															(A17) 

 

which in turn implies a re-normalized geometric mean, or the Cobb-Douglas function; i.e., 

 

											𝑐(𝑝) = 𝑒Ç𝑝&
�z × …× 𝑝1

�|.																																																							(A17′) 

 

 

The linear homogeneity and monotonicity properties of the unit cost function imply that the constant 𝐶 is 

positive and the 𝛼C must sum to 1; i.e., we have: 

 

																																						P𝛼C

1

CD&

= 1.																																																									(A18)	 

 

Note that (A17) is equivalent to (16) in the main text. It should be also noted that the above proof due to 

the authors is quite different from other axiomatic justifications for the Cobb-Douglas price index. These 

alternative axiomatic justifications rely on the circularity test for bilateral index number formula of the form 

𝑃(𝑝&, 𝑝/, 𝑞&, 𝑞/).63 The circularity test states that the bilateral index number formula satisfies the equation  

 

𝑃(𝑝&, 𝑝/, 𝑞&, 𝑞/) × 𝑃(𝑝/, 𝑝³, 𝑞/, 𝑞³) = 𝑃(𝑝&, 𝑝³, 𝑞&, 𝑞³).64   

 

Discussion of (27) and (32) in section 9 

 

Konüs and Byushgens in section 9 developed a method to show which functional forms for the utility 

function and for the dual cost function are consistent with the use of the Fisher ideal index. Diewert (1976; 

pp. 141-143) used their method of proof to establish some more general results. What is not clear in section 

9 is how exactly did the authors establish a connection between their Equations (27) and (32) and so we try 

                                                
62 We provide a proof of this result in Appendix B below. 
63 See Fisher (1922) for a discussion of the circularity test.  
64 For these alternative justifications, see Eichhorn (1978; 167-168), Vogt and Barta (1997; 47) and Diewert (2020a;  
14). 
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to clarify it below. Using our notation, (27) is equivalent to defining the purchaser’s unit cost function as 

follows: 

 

𝑐(𝑝) ≡ OPP𝐶mC𝑝m𝑝C

1

CD&

1

mD&

R

&
/

																																											(𝐴19) 

 

where the constants 𝐶mC  satisfy 𝐶mC = 𝐶Cm  for all 1 ≤ 𝑘, 𝑖 ≤ 𝑛.  Thus 𝑐(𝑝) is the square root of a quadratic 

form in product prices. The author’s equation (32) is equivalent to the following equation:  

 

																										𝑓(𝑞) = ÈPP𝐶¯±𝑞¯𝑞±

1

±D&

1

¯D&

É

&
/

																																				(A20) 

 

where the constants 𝐶¯±  satisfy 𝐶¯± = 𝐶±¯  for all 1	£	𝑚, 𝑗	£	𝑛.  Thus 𝑓(𝑞) is the square root of a quadratic 

form in product quantities. The authors assert that Equations (27) follows from (32), i.e., in our notation 

(A20) follows from (A19), but they do not indicate exactly how this follows or how the 𝐶¯±  in (A20) relate 

to the 𝐶mC  in (A19). Below, we provide a likely explanation for the authors’ results. 

 

Suppose the purchaser’s unit cost function is defined by (A19) so that 𝑐(𝑝) = [𝑝 ∙ 𝑪𝑝]&// where 𝑪 ≡ [𝐶Cm] 

is the symmetric 𝑛 by 𝑛 matrix of constant coefficients that appear in definition (A19).65 Equations (A13) 

above give us a formula for calculating the utility function 𝑓(𝑞) that corresponds to the unit cost function 

defined by (A19). Let 𝑞∗ be a given positive quantity vector. In order to calculate 𝑓(𝑞∗) from a knowledge 

of 𝑐(𝑝), we need to solve the constrained maximization problem: 

 

       max�{𝑐(𝑝) ∶ 𝑝 ≥ 01	, 𝑝 ∙ 𝑞∗ = 1} = max�{[𝑝 ∙ 𝑪𝑝]
z
{ ∶ 	𝑝 ≥ 01	, 	𝑝 ∙ 𝑞∗ = 1}. (A21) 

 

Since 𝑐(𝑝) ≡ [𝑝×𝑪𝑝]
z
{  is assumed to be non-negative for non-negative price vectors 𝑝, maximizing the 

positive square root of 𝑝×𝑪𝑝 will be equivalent to maximizing 𝑝×𝑪𝑝. The first order necessary conditions 

for a positive 𝑝∗ and Lagrange multiplier l* to solve max�{𝑝 ∙ 𝑪𝑝 ∶ 	𝑝 ≥ 01	and		𝑝 ∙ 𝑞∗ = 1} are as follows: 

                                                
65 The 𝑪 matrix needs to satisfy certain restrictions to ensure that it satisfies the regularity conditions for a unit cost 
function; i.e., it must be non-decreasing, concave and positive if the vector of prices is positive. It is automatically 
linearly homogeneous. We will discuss regularity conditions on 𝑐(𝑝) later but for now, we assume that they are 
satisfied.  



45 
 

 

𝑪𝑝∗ = 𝜆∗𝑞∗																																																																			(A22) 

 

𝑝∗ ∙ 𝑞∗ = 1																																																																					(A23) 

 

Assume that the symmetric matrix 𝑪 has an inverse, 𝑪�&. Premultiply both sides of (A22) by 𝑪�& and we 

obtain the equation: 

 

𝑝∗ = 𝜆∗𝑪�&𝑞∗																																																																(A24) 

 

Take the inner product of both sides of (A24) with 𝑞∗ and use (A23) to obtain the following solution for 𝜆∗: 

 

𝜆∗ = 1/(𝑞∗ ∙ 𝑪�&𝑞∗)																																																				(A25) 

 

Substitute (A25) back into (A24) and we find that the solution to max�{𝑝 ∙ 𝑪𝑝 ∶ 	𝑝 ≥ 01	and		𝑝 ∙ 𝑞∗ = 1}  

and to max�{[𝑝 ∙ 𝑪𝑝]&// ∶ 	𝑝 ≥ 01	and		𝑝 ∙ 𝑞∗ = 1} is: 

 

𝑝∗ = 𝑪�&𝑞∗/(𝑞∗ ∙ 𝑪�&𝑞∗)																																												(A26) 

 

Thus, 𝑝∗ ∙ 𝑪𝑝∗ is equal to  𝑞∗ ∙ 𝑪�&𝑪𝑪�&𝑞∗/(𝑞∗ ∙ 𝑪�&𝑞∗)/ = 1/(𝑞∗ ∙ 𝑪�&𝑞∗). Finally, take the positive 

square root of 𝑝∗ ∙ 𝑪𝑝∗ and use the last equality in (A13) to show that: 

 

  𝑓(𝑞∗) = 1/𝑐(𝑝∗) = 1/[𝑝∗ ∙ 𝑪𝑝∗]&// = [(𝑞∗ ∙ 𝑪�&𝑞∗)]&//																	(A27) 

 

Thus, the matrix coefficients 𝐶¯±	 in definition (A20) are the elements of the inverse matrix  𝑪�&	 under 

our assumption that the original  𝑪 matrix has full rank  𝑛. 

 

It is possible to start with a normalized quadratic functional form for the utility function 𝑓(𝑞) and show that 

the corresponding unit cost function also has a normalized quadratic functional form. To see this, define 

𝑓(𝑞)  as follows for 𝑞 ≥ 01 : 

 

𝑓(𝑞) ≡ [𝑞 ∙ 𝑩𝑞]&//																																																									(𝐴28) 
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where 𝑩 ≡ [𝑏C±] is a symmetric 𝑛 by 𝑛 matrix that has full rank 𝑛.66  

 

For a positive commodity price vector 𝑝∗, the unit cost function that corresponds to the utility function 𝑓 

defined by (A28) is defined as the solution to the following constrained cost minimization problem:  

 

𝑐(𝑝∗) ≡ mind	Í𝑝∗ ∙ 𝑞 ∶ 	 [𝑞 ∙ 𝑩𝑞]&// = 1	; 	𝑞	 ≥ 	 01Î.              (A29) 

The constraint in (A29) can be replaced by the constraint 𝑞 ∙ 𝑩𝑞 = 1. The first order necessary conditions 

for 𝑞∗ to solve the problem mind	{𝑝∗ ∙ 𝑞 ∶ 	𝑞 ∙ 𝑩𝑞 = 1	; 	𝑞	 ≥ 	01} are the following conditions: 

 

𝑝∗ = 𝜆∗𝑩𝑞∗																																																																	(A30) 

 

𝑞∗ ∙ 𝑩𝑞∗ = 1																																																															(A31) 

 

Since 𝑩�& exists, (A30) implies that: 

 

𝑞∗ = 𝑩�&𝑝∗/𝜆∗																																																									(A32) 

 

Substitute this expression for 𝑞∗ into (A31) and solve the resulting equation for 𝜆∗. We find that 𝜆∗ =

[𝑝∗ ∙ 𝑩�&𝑝∗]&// and substituting this into (A32) and we find that 𝑞∗ = [𝑝∗ ∙ 𝑩�&𝑝∗]𝑩�&𝑝∗. Thus, we have 

 

𝑐(𝑝∗) = 𝑝∗ ∙ 𝑞∗ = [𝑝∗ ∙ 𝑩�&𝑝∗]&//.																						(A32) 

 

Discussion of the results in section 9 

 

It seems that Konüs and Byushgens implicitly assumed that the rank of their 𝑪 matrix was full. But Diewert 

(1976; 134-135) noted that it is not necessary to assume that the rank of 𝑪 (or 𝑩 if we start with utility 

function) is full; there are interesting cases of 𝑩 and 𝑪 that are of rank 1 and correspond to interesting 

preferences. Thus, if the 𝑪 matrix is equal to 𝒄𝒄⊺, where 𝒄 is a column vector of positive coefficients and 𝒄⊺ 

is the transpose of 𝒄 (a row vector), then the unit cost function becomes the linear function 𝑝 ∙ 𝑞 which 

corresponds to Leontief (no substitution) preferences. Thus, the Fisher price (or quantity) index is exact for 

this class of preferences.67 And if the 𝑩 matrix is equal to 𝒃𝒃⊺, where 𝒃 is a column vector of positive 

                                                
66 We will discuss additional regularity conditions on the matrix 𝑩 below.  
67 This fact was noted by Pollak (1971).  
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coefficients and 𝒃⊺ is the transpose of 𝒃, then the corresponding utility function is the linear function 𝒃 ∙ 𝑞. 

The Fisher price (or quantity) index is also exact for this class of preferences. 

   

The above two special cases lead to preferences and unit cost functions which are globally well behaved. 

However, in cases where the rank of the 𝑪 and 𝑩 matrices is greater than 1, the situation is more 

complicated.68 Diewert (1976; p. 116) noted that the 𝑩 matrix which appears in definition (A28) must have 

a positive eigenvalue with a corresponding positive eigenvector and the remaining eigenvalues of 𝑩 must 

be negative or zero. A similar property must hold for the 𝑪 matrix which appears in definition (A20). 

Diewert and Hill (2010) established more precisely exactly what the region of regularity is for the functional 

forms defined by (A20) and (A28). 

  

Finally, Diewert (2020b) and Diewert and Feenstra (2019, 2022) showed how concavity could be imposed 

upon the functional forms defined by (A20) and (A28) without destroying the flexibility of these functional 

forms for utility functions and unit cost functions by adapting the methods developed by Diewert and Wales 

(1987) (1988) for imposing the correct curvature conditions on a different class of functional forms.  

 

Below, we clarify how the concavity conditions can be imposed on 𝑐(𝑝) ≡ [𝑝×𝑪𝑝]
z
{ where 𝑪 ≡ [𝐶Cm] is a 

symmetric 𝑛 by 𝑛 matrix of unknown coefficients. Konüs and Byushgens (1926) show that the system of 

purchaser demand functions that is generated by this functional form is given by their equations (34). Let 

𝑞�  be the purchaser’s period 𝑡 quantity demanded vector, let 𝑝� be the market price vector for products 

purchased in period 𝑡 and let 𝐸� be total expenditure on products in period 𝑡. Then equations (34) in our 

notation become the following system of ordinary consumer equations: 

 

𝑞� =
𝐸�𝑪𝑝�

𝑝� ∙ 𝑪𝑝�
,												𝑡 = 1,… , 𝑇∗																							(A34) 

 

where 𝑇∗ is the number of periods for which data on prices and quantities are available.  

 

The correct curvature conditions on 𝑪 are imposed in a series of nonlinear regressions. For the stage 1 

regression, set the matrix 𝑪 equal to 𝒄&𝒄&′  where 𝒄& is a column vector and 𝒄&h ≡ [𝑐&&, … , 𝑐1&] is the transpose 

of 𝒄&. For the stage 2 regression, set 𝑪 equal to 𝒄&𝒄&h − 𝒄/𝒄/h where again 𝒄/ is a column vector and 𝒄/h ≡

                                                
68 Both Pollak (1971) and Afriat (1972; 72) were uncertain about what regularity conditions had to be imposed on the 
matrix 𝑪 or 𝑩 in order to derive the exactness properties of the Fisher price and quantity indexes.  
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[𝑐&/, … , 𝑐1/] is the transpose of 𝒄/. We also add the linear restriction 𝟏1 ∙ 𝒄/ = 0  on the coefficients in the 

𝒄/ vector where 𝟏1 is an 𝑛-dimensional vector of ones.69 For the stage 3 regression, set 𝑪 equal to 𝒄&𝒄&h −

𝒄/𝒄/h − 𝒄³𝒄³h where 𝒄³ is a column vector and 𝒄³h ≡ [𝑐&³, … , 𝑐1³] is the transpose of 𝒄³. The restrictions on 

𝒄/ are the same as in stage 2. There are two linear restrictions on 𝒄³: 𝟏1 ∙ 𝒄³ = 0  and 𝒄&³ = 0. For the stage 

4 regression, set 𝑪 equal to 𝒄&𝒄&h − 𝒄/𝒄/h − 𝒄³𝒄³h − 𝒄´𝒄´h where 𝒄´ is a column vector and 𝒄´h ≡

[𝑐&´, … , 𝑐1´] is the transpose of 𝒄´. The restrictions on 𝒄/ and 𝒄³ are the same as in stage 3. There are three 

linear restrictions on 𝒄´: 𝟏1 ∙ 𝒄´ = 0, 𝒄&´ = 0 and 𝒄/´ = 0. In theory, we can keep on adding columns until 

𝑪 is equal to the rank 𝑛 matrix 𝒄&𝒄&h − 𝒄/𝒄/« − 𝒄³𝒄³« − ⋯− 𝒄1�&𝒄1�&h. In practice, the procedure will 

stop at some point when the last estimated 𝒄m vector turns out to be 𝟎1 and the log-likelihood of the model 

stops increasing. Of course, if 𝑛 is large, and the number of periods is small, it will not be possible to 

estimate a rank 𝑛 substitution matrix 𝑪. However, the suggested estimation procedure will lead to a 

semiflexible functional form.70  

    

To conclude, the 1924 paper by Konüs is rightfully regarded as a landmark in the history of index number 

theory. But, from the discussions above it can be seen that the present paper by Konüs and Byushgens is 

also a landmark in the history of index number theory. It stimulated the development of exact and 

superlative index numbers which are widely used by statistical agencies today. And, it also suggested two 

classes of very useful flexible functional forms for direct and inverse systems of consumer demand 

functions which will probably be widely used in the future.    

 

  

                                                
69 The stage 2 nonlinear regression uses the final estimates for the components of 𝒄& along with small values for the 
coefficients in 𝒄/ as starting values for the stage 2 regression. 
70 See Diewert and Wales (1988) on the concept of a semiflexible functional form.  
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Appendix B: Proof that (A16) follows from (A17)  

in the Derivation of the Cobb-Douglas function of Konüs and Byushgens 

 

This appendix focuses on the proof that for the system of partial differential equations given in (A16), i.e., 

  

																		
𝜕 ln 𝑐(𝑝)
𝜕𝑝C

=
𝛼C
𝑝C
,														𝑖 = 1,… , 𝑛.																																													(B1)						 

 

the unique solution ( up to a constant) is given by (A17), i.e., 

 

ln 𝑐(𝑝) = 𝐶 + 𝛼& ln 𝑝& +⋯+ 𝛼1 ln 𝑝1 .																																																(B2)	 

 

We note that there are different ways to prove this result, including an indirect way that relies on general 

theorems in multivariate calculus. For the sake of completeness, here we provide a direct and explicit proof, 

which involves minimal knowledge of calculus and differential equations (along with the principle of 

mathematical induction). To do so, first suppose 𝑐(𝑝) is a once differentiable function of the scalar variable 

𝑝 which is defined for 𝑝 > 0. From the theory of ordinary differential equations, we know that the set of 

solutions to the differential equation 𝑑 ln 𝑐(𝑝) /𝑑𝑝 = 𝛼𝑝�& for 𝑝 > 0  (where 𝛼 is a constant) is ln 𝑐(𝑝) =

𝛼 ln 𝑝 + 𝛽 where 𝛽 is a constant. Now look at the first equation in (B1) and hold 𝑝/, 𝑝³,…	, 𝑝1 constant. 

Applying the above solution to this ordinary differential equation gives us the following expression for 

ln 𝑐(𝑝&, 𝑝/, …	, 𝑝1): 

 

ln 𝑐(𝑝&, 𝑝/,…	, 𝑝1) = 𝛼& ln 𝑝& + 𝛽&(𝑝/, 𝑝³, …	, 𝑝1)																											(B3) 

 

where 𝛽&(𝑝/, 𝑝³,…	, 𝑝1) is constant as far as variations in 𝑝& are concerned but this “constant” will depend 

on (𝑝/, 𝑝³,…	, 𝑝1) in general.  

 

Now, look at the second equation in (B1) and hold (𝑝&, 𝑝³, …	, 𝑝1) constant. Applying the above solution 

to this ordinary differential equation gives us the following expression for ln 𝑐(𝑝&, 𝑝/, …	, 𝑝1): 

 

ln 𝑐(𝑝&, 𝑝/,…	, 𝑝1) = 𝛼/ ln 𝑝/ + 𝛽/(𝑝&, 𝑝³, 𝑝´, …	, 𝑝1)																					(B4) 
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where 𝛽/(𝑝&, 𝑝³, 𝑝´, …	, 𝑝1) is a “constant” which will depend on (𝑝&, 𝑝³, 𝑝´, …	, 𝑝1) in general. Now equate 

the two expressions for ln 𝑐(𝑝&, 𝑝/, …	, 𝑝1) and solve the resulting equation for 𝛽&(𝑝/, 𝑝³,…	, 𝑝1). The 

following solution is obtained: 

 

𝛽&(𝑝/, 𝑝³,…	, 𝑝1) = 𝛼/ ln 𝑝/ − 𝛼& ln 𝑝& + 𝛽/(𝑝&, 𝑝³, 𝑝´, …	, 𝑝1)					(B5) 

 

The left-hand side of equation (B5) does not depend on 𝑝&. Hence the right hand side of (B5) must also not 

depend on 𝑝&. This means that the function 𝛽/(𝑝&, 𝑝³, 𝑝´, …	, 𝑝1) must have the following form: 

 

𝛽/(𝑝&, 𝑝³, 𝑝´, …	, 𝑝1) = 𝛼& ln 𝑝& + 𝛽/∗(𝑝³, 𝑝´, …	, 𝑝1)																							(B6) 

 

Note that the new function 𝛽/∗(𝑝³, 𝑝´, …	, 𝑝1)	does not depend on 𝑝& or 𝑝/. Now substitute (B6) into (B4) 

and we obtain the following expression for ln 𝑐(𝑝&, 𝑝/,…	, 𝑝1): 

 

ln 𝑐(𝑝&, 𝑝/, …	, 𝑝1) = 𝛼& ln 𝑝& + 𝛼/ ln 𝑝/ + 𝛽/∗(	𝑝³, 𝑝´, …	, 𝑝1).					(B7) 

 

Now, look at the third equation in (B1) and hold all elements of 𝑝 constant except 𝑝³. Applying the above 

solution to this ordinary differential equation gives us the following expression for ln 𝑐(𝑝&, 𝑝/, …	, 𝑝1), we 

get: 

 

ln 𝑐(𝑝&, 𝑝/,…	, 𝑝1) = 𝛼³ ln 𝑝³ + 𝛽³(	𝑝&, 𝑝/, 𝑝´, …	, 𝑝1)																				(B8) 

 

where 𝛽³(	𝑝&, 𝑝/, 𝑝´, …	, 𝑝1) is a “constant” which will depend on (𝑝&, 𝑝/, 𝑝´, …	, 𝑝1) in general.  

 

Now equate the two expressions (B7) and (B8) for ln 𝑐(𝑝&, 𝑝/,…	, 𝑝1) and solve the resulting equation for 

𝛽/∗(	𝑝³, 𝑝´, …	, 𝑝1). The following solution is obtained: 

 

   𝛽/∗(	𝑝³, …	, 𝑝1) = −𝛼& ln 𝑝& − 𝛼/ ln 𝑝/ + 𝛼³ ln 𝑝³ 

+𝛽³(	𝑝&, 𝑝/, 𝑝´, …	, 𝑝1).																			(B9) 

 

The left-hand side of equation (B9) does not depend on 𝑝& or 𝑝/.. Hence the right-hand side of (B9) must 

also not depend on 𝑝& or 𝑝/.. This means that the function 𝛽³(	𝑝&, 𝑝/, 𝑝´, …	, 𝑝1) must have the following 

form: 
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   𝛽/(𝑝&, 𝑝³, 𝑝´, …	, 𝑝1) = 𝛼& ln 𝑝& + 𝛼/ ln 𝑝/ 

          +𝛽³∗(	𝑝´, 𝑝µ, …	, 𝑝1).																(B10) 

 

Now substitute (B10) into (B8) and we obtain the following expression for ln 𝑐(𝑝&, 𝑝/,…	, 𝑝1): 

 

   ln 𝑐(𝑝&, 𝑝/, …	, 𝑝1) = 𝛼& ln 𝑝& + 𝛼/ ln 𝑝/ + 𝛼³ ln 𝑝³ 

       +	𝛽³∗(𝑝´, 𝑝µ,…	, 𝑝1).																			(B11) 

 

The above process can be continued until we obtain the following expression for ln 𝑐(𝑝&, 𝑝/,…	, 𝑝1): 

 

 ln 𝑐(𝑝&, 𝑝/, …	, 𝑝1) = 𝛼& ln 𝑝& + 𝛼/ ln 𝑝/ +⋯+ 𝛼1 ln 𝑝1 + 𝛽1∗																		(B12) 

 

where  𝛽1∗  is a genuine constant, which we can denote generically as 𝐶. (B12) is equivalent to (B2), which 

is what we needed to prove.  
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