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Abstract 

 
A Multiplicative Directional Distance Function (MDDF), which encompasses all commonly used mul-

tiplicative efficiency measures, is defined.  We provide a discussion of its main properties (in particular 

scale invariance); a proof of a duality result involving the profitability ratio; and a set of equations that 

show how the MDDF and the existing (additive) Directional Distance Function (DDF) are mathemati-

cally related. The findings are then illustrated via a small numerical example. 
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1. Introduction 
 

Input, Output and Hyperbolic Distance Functions have been used for a number of decades (in effi-

ciency analysis and production economics) to characterize technologies and estimate efficiency scores 

from input-output datasets. These efficiency measures involve a proportional (radial) contraction of 

inputs and/or expansion of outputs to the production frontier. More recently, Chambers et al. (1998) 

introduced the notion of a Directional Distance Function (DDF) where the projection onto the produc-

tion frontier occurs on a pre-assigned (possibly non-radial) direction. Färe & Grosskopf (2000) 

showed that a number of the standard radial measures (Input, Output and Hyperbolic oriented) could 

be considered as special cases of the additive DDF (ADDF). 

The ADDF is linear in nature and, as noted by Salnykov & Zelenyuk (2005), this fact leads to a 

structural lack of commensurability (i.e., scale invariance). As they emphasize, scale invariance is a 

very desirable property, since it avoids the danger that different researchers (using the same methodol-

ogy and datasets) may obtain different results because they happen to define input and/or output 

measures using different units (e.g., specifying fertiliser in tonnes versus kilograms). 

The duality of the ADDF to the profit function (see Chambers et al., 1998 and Färe & Grosskopf, 

2000) gives rise to an additive decomposition of overall economic efficiency into technical and alloca-

tive components. Additive decompositions could be useful in application where the interest is in abso-

lute profit; alternatively, when the focus is relative profit (i.e., profitability) the “return to the dollar” 

notion (the ratio of revenue over cost, see Färe et al., 2002) is a more suitable notion. 

In this study we contribute to this literature by introducing the notion of a Multiplicative Direc-

tional Distance Function (MDDF) as the multiplicative counterpart to the ADDF. Some special cases 

of the MDDF include the Input, Output and Hyperbolic distance functions, as well as the modified 

hyperbolic distance function discussed in Cuesta et al. (2007) (which allows one to consider bad out-
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puts in the production process). We show that the MDDF is multiplicative in nature, it satisfies com-

mensurability (scale invariance) and that it is dual to the “return to the dollar”. The duality result per-

mits a multiplicative decomposition of overall efficiency (into allocative and technical components) 

instead of the additive decomposition reached with ADDF. 

The remainder of this paper is organized into sections. In section 2 we define the Multiplicative 

Directional Distance Function. Section 3 covers duality properties, while Section 4 is dedicated to the 

establishment of a formal connection between the ADDF and the MDDF. A numerical example is 

provided in section 5, with Section 6 containing some concluding remarks. 

2. Definitions and Properties 

A production process that produces M outputs ( MR∈y ) by means of N inputs ( NR∈x ) may be 

represented with the production set as 

{ }yxyx producecanRT MN :),( +∈= . (1) 

We assume that the following standard regularity conditions apply to the production set:  

(H1) No free lunch: T∈),( 0x  and T∈),( y0  0y =⇒ ;  

(H2) the Production Set is Closed;  

(H3) the Production Set is bounded;  

(H4) Strong disposability: if T∈),( yx  then T∈)','( yx  for each ( ) ( )yyxx ≤∩≥ '' ;  

(H5) Convexity: if T∈)','(),,( yxyx  then ( ) ( ){ } Tyyxx ∈−+−+ '1','1 αααα . 

The Multiplicative Directional Distance Function (MDDF) is defined as 

( ) ( ){ }, , , inf 0 : ,H Tθ θ θ −= > ∈Z Qx y z q x y  (2) 
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where NR∈z  and MR∈q  are two exogenously given vectors that we call the orientation vector and 

)(zZ diag= , )(qQ diag=  are the diagonal matrices built with z, q.  

Some properties of the MDDF are as follows.  

P1.  The MDDF characterizes the technology: ( ) 1,,,0 ≤< qzyxH  if and only if ( ) T∈yx, . 

P2.  The MDDF is equal to 1 for efficient points. 

P3.  The MDDF is almost homogeneous of degree ( )1,,qz−  in ( )yx, : 

( ) ( )qzyxqzyx QZ ,,,,,, HH μμμ =− . 

Proof: 

Following Cuesta & Zofio (2005) and Cuesta et al. (2007), we define a function ( )yxF ,  as almost 

homogeneous of degree ( )321 ,, kkk  if 

( ) ( )yxFyxF kkk ,, 321 μμμ = , 

where the parameters ( )321 ,, kkk  are given.  Using this, we have 

( ) ( ){ }=∈>= −−− TH yxqzyx QQZZQZ μθμθθμμ ,:0inf,,,

( )qzyxyx
QZ

,,,,:0inf HT μ
μ
θ

μ
θ

μ
θμ =

⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧

∈
⎟
⎟

⎠

⎞

⎜
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⎝

⎛
⎟⎟
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⎞
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⎝

⎛
⎟⎟
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⎝

⎛
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□ 

P4.  The MDDF is homogeneous of degree –1 in ( ),z q : 

( ) ( ) λλλ
1

,,,,,, qzyxqzyx HH = , 0>λ ; 

Proof:  
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( ) ( ){ }=∈>= − TH yxqzyx QZ λλ θθθλλ ,:0inf,,,  

( ){ }[ ] ( ) λλλλλ θθθ
11

,,,,:0inf qzyxyx QZ HT =∈> − . 

□ 

P5.   MDDF is scale invariant (commensurable) 1: ( ) ( )qzyxqzyΩxΩ ,,,,,, HH yx = . 

Proof:   Let xΩx x=~  and yΩy y=~  be a transformation of the input-output vector, where yx ΩΩ ,  

are two diagonal matrices with strictly positive constants on the diagonal (these matrices are a re-

scaling of the original input-output space). The transformed technology can be defined as 

( ) ( ){ } ( ) ( ){ }TTT yx ∈=∈= −− yΩxΩyxyxyx ~,~:~,~,:~,~~ 11 . 

Using definition (2) and the definition of the transformed technology we can write 

( ) ( ){ }
( ){ }
( ){ } ( )

1 1

, , , inf 0 : ,

inf 0 : ,

inf 0 : , , , ,

x y

H T

T

T H

θ θ θ

θ θ θ

θ θ θ

−

− − −

−

= > ∈ =

= > ∈ =

= > ∈ =

Z Q

Z Q

Z Q

x y z q x y

Ω x Ω y

x y x y z q

%% % % %

% %  

□ 

Special cases: 

The traditional input and output distance functions can be obtained by placing restrictions on the 

orientation vector ( )qz, . The input distance function is obtained using the vector ( ) ( )01qz ,, =  and 

the almost homogeneity condition (P3) becomes a homogeneity condition of degree -1 in inputs: 

                                                           
1 This is an important property that the MDDF satisfies while the ADDF does not. 
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),,,(1),,,( 0q1zyx0q1zyx ==⋅=== HH
μ

μ  

The output distance function is obtained if we choose ( ) ( )10qz ,, = . The almost homogeneity 

condition (P3) then becomes a homogeneity condition of degree 1 in outputs: 

),,,(),,,( 1q0zyx1q0zyx ==⋅=== HH μμ . 

Finally, if we choose ( ) ( )11qz ,, =  we obtain the Hyperbolic Distance Function or graph efficien-

cy measure. This function is almost homogeneous of degree ( ), ,1−1 1  

),,,(),,,( 1 1q1zyx1q1zyx ==⋅===− HH μμμ . 

3. Duality 

Färe et al. (2002) and Färe & Grosskopf (2004) pointed out that the Graph Efficiency Measure 

(i.e., the hyperbolic distance function) is dual to the “Return to the Dollar” when the maximum feasi-

ble profit is zero. In efficiency measurement, duality results play an important role in permitting an 

economic interpretation of the efficiency indexes, therefore it is important to establish a dual theorem 

for the MDDF.  

Let NR+∈w  be the vector of input prices and MR+∈p  the vector of output prices. The profit 

function is 

( )
( )

( ){ }T∈−=Π yxwxpywp
yx

,:sup,
,

 (3) 

Under CRS, the maximum feasible profit is zero, therefore the maximum “return to the dollar” 

wx
py

 is one. Given that the profit function cannot be smaller than the profit associated with any feasi-

ble production plan in the production set, it is also true that 
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( ) xwypwp ZQ HH −≥Π −, . (4) 

Furthermore, given that under CRS the maximum feasible profit is zero, we have 

xwyp ZQ HH −≥ −0 . Then rearranging terms and multiplying by the “return to the dollar” one ob-

tains: 

yp
xw

wx
py

wx
py

Q

Z

−⋅≤
H
H

. (5) 

We note that the right-hand side is the actual loss in profitability due to technical inefficiency. De-

fining the following exponential factor 

( ) ( ) ( ) ( )[ ]yppywxxw QZ −−+−=Δ HH
H

lnlnlnln
ln

1
 (6) 

it is easy to show that ( )[ ]
yp
xw

wx
pyqzyx Q

Z

−
Δ ⋅=

H
HH ,,,  and the duality theorem for the MDDF can be 

expressed as 

( )[ ]Δ≤ qzyx
wx
py ,,,H . (7) 

The duality of the MDDF to the “return to the dollar”, supports the interpretation of the MDDF as 

a “loss in profitability measure” (once the adjustment exponential factor Δ has been taken into ac-

count). In the case of the hyperbolic distance function ( 1q1z == , ) the exponential factor becomes 

independent of prices: 2=Δ  (see Färe et al., 2002). If price information is available, using the expo-

nential factor it is possible to have a measure of technical efficiency that is independent from any re-

scaling of the orientation vector (see P4). In fact, using P4, we see that: 

( )[ ] ( )
( )

( )
( )

( )
( )

( )[ ]Δ−
−

−
Δ

=⋅=⋅=

=⋅=
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yqzyxp
xqzyxw
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yqzyxp

xqzyxw
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xqzyxw
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pyqzyx
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Z
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Z
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,,,

,,,

,,,
,,,,,,
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1
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H
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λ
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λ
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This finding is not surprising since, when price information is available, the efficiency measure 

( )[ ]Δqzyx ,,,H  is the actual loss in profitability due to technical inefficiency. It follows that market 

prices give us the opportunity to choose a very natural normalization for the MDDF. 

Using this duality result it is possible to (multiplicatively) decompose overall efficiency, 

wx
py

=OE , into a technical efficiency component, ( )[ ]Δ= qzyx ,,,HTE , and a residual allocative 

efficiency component, 
TE
OEAE = : 

TEAEOE ⋅= . (8) 

As emphasized by Färe et al. (2002) the “return to the dollar” is bounded between zero and one 

only under CRS. Deviations from CRS imply that the allocative component can take any value, with a 

value of one signalling allocative efficiency. Moreover, if CRS doesn’t hold, the production plan that 

maximizes the “return to the dollar” could be different from the one that maximizes absolute profit 

(the profit function). 

4. Connections between the ADDF and the MDDF 

Following Chambers et al (1998) and Färe & Grosskopf (2000, 2004), we define the 

ADDF as 

{ }TD yxyx ∈+−= ),(:sup),,,( gygxggyx βββ , (9) 

where the (N+M)×1 exogenously given direction vector ( )yx gg ,  specifies the direction in which the 

input-output vector is projected onto the production frontier. The slack vector2 associated to optimiza-

tion problem (9) is ( ) ( )yxyx ggss ,, ⋅= β , or equivalently: 

                                                           
2 The slack vector describes the absolute change in the input-output vector for it to reach the frontier. 
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⎩
⎨
⎧

==
==

MjDgs
NiDgs

yjyj

xixi

,,1,
,,1,

K

K
 (10) 

For the case of the MDDF, we use definition (2) to define the slack vector as 

( )
( )
1 , 1, ,

1 , 1, , .

i

j

z
xi i

q
yj j

s H x i N

s H y j M−

⎧ = − =⎪
⎨

= − =⎪⎩

K

K
 (11) 

Combining equations (10) and (11) we obtain 

( )

( )

1
, 1, ,

1
, 1, , ,

i

j

z
i

xi

q
j

yj

H x
g i N

D
H y

g j M
D

−

⎧ −
⎪ = =
⎪
⎨

−⎪
= =⎪

⎩

K

K

 (12) 

which after rearrangement, becomes 

ln , 1, ,

ln , 1, , .

i
i

xi

yj
j

j

xz i N
Hg

Hg
q j M

y

⎧ ⎛ ⎞
= =⎪ ⎜ ⎟

⎝ ⎠⎪
⎨

⎛ ⎞⎪ = =⎜ ⎟⎪ ⎜ ⎟
⎝ ⎠⎩

K

K

 (13) 

Here we see that with ( )yx gg ,  fixed, the values of the vector ( ),z q  depend both on the value of the 

input-output vector and the measure of distance. By considering ( )yx gg ,  as fixed we are imposing a 

translation invariance property upon the MDDF, meaning that we cannot then choose a fixed orienta-

tion vector ( ),z q . Conversely, from equation (12) we note that when the orientation vector ( ),z q  is 

fixed, the directional vector ( )yx gg ,  depends both on the value of the input-output vector and the dis-
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tance from the frontier.  With the fixity of ( ),z q  we impose an almost homogeneity property on the 

MDDF measure, meaning that the ADDF requires a non-fixed directional vector ( )yx gg , . 

5. Numerical Example 

In this numerical example we consider (for ease of exposition) only those projections which are or-

thogonal to the output set ( 0g =y ; 0q = ), and a constant returns to scale technology. It follows that 

we can focus our attention on the production coefficients ( y
xa 1

1 = ; y
xa 2

2 = ) when considering a 

simple two-input, one-output example. Our example is presented in Table 1 and Figure 1, where points 

a1, a2, a3, a4 are efficient (they define the convex production frontier), while point a0 is inefficient. 

To begin, let us consider the standard input oriented distance function. To represent this function using 

the MDDF we impose 1z = , while for the ADDF the elements of the corresponding directional vec-

tor are 
2

i
xi

ii

xg
x

=
∑

. With radial projection, points a2 and a3 are the peers of the inefficient observa-

tion. The efficiency target for a0 is 0

2.5
2.5

E ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

a , the associated slack vector is 
2.5
2.5
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

s , the MDDF is 

0.5 while the ADDF is 
2

25
. The efficiency target can be found by solving optimization problem (2) 

or alternatively problem (9). 

Now, let us choose a different orientation vector, such as 
1
2
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

z . The peers for the inefficient obser-

vation are now a3 and a4, and the new efficiency target now has to lie on the convex linear combina-

tion  
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*
0 3 4

5 2
(1 )

1
E α

α α
α

−⎡ ⎤
= + − = ⎢ ⎥+⎣ ⎦

a a a  

Moreover we know that *
0 0
E ZH=a a  where H is unknown. Thus we can write the following system of 

equations: 

⎩
⎨
⎧

=+

=−
251

525
H

H
α

α
 

Solving this system we obtain the MDDF measure, the efficiency target and hence the slacks: 

623.0≅H , 942.0≅α , 884.11 ≅s , 058.32 ≅s . The ADDF information can then be found using 

the slacks: 592.3=D , 525.01 =g , 851.02 =g . If we now use this directional vector 

( )851.0,525.0=xg  we can obtain the same efficiency target by using optimization problem (9). 

6. Conclusions 

 In this study we provide a formal definition of the Multiplicative Directional Distance Function 

(MDDF) and its properties. We show that the MDDF satisfies commensurability (scale invariance). 

Moreover, we show that the MDDF is dual to the “return to the dollar” and this duality allows one to 

decompose (multiplicatively) overall efficiency into a technical efficiency component and a residual 

allocative efficiency component. In addition, we derive a formal connection between the MDDF and 

the ADDF. A numerical example is used to illustrate the findings of the paper. 
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Table 1:  Production coefficients of five observations 
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Figure 1:  Numerical example 

  a1 a2 
a0 5 5 
a1 1 5 
a2 2 3 
a3 3 2 
a4 5 1 
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