Model selection in spline nonparametric regression
Sally Wood,
Robert Kohn (),
Tom Shively and
Wenxin Jiang
Journal of the Royal Statistical Society Series B, 2002, vol. 64, issue 1, 119-139
Abstract:
A Bayesian approach is presented for model selection in nonparametric regression with Gaussian errors and in binary nonparametric regression. A smoothness prior is assumed for each component of the model and the posterior probabilities of the candidate models are approximated using the Bayesian information criterion. We study the model selection method by simulation and show that it has excellent frequentist properties and gives improved estimates of the regression surface. All the computations are carried out efficiently using the Gibbs sampler.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00328
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:64:y:2002:i:1:p:119-139
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().