Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches
İsmail Kırbaş,
Adnan Sözen,
Azim Doğuş Tuncer and
Fikret Şinasi Kazancıoğlu
Chaos, Solitons & Fractals, 2020, vol. 138, issue C
Abstract:
In this study, confirmed COVID-19 cases of Denmark, Belgium, Germany, France, United Kingdom, Finland, Switzerland and Turkey were modeled with Auto-Regressive Integrated Moving Average (ARIMA), Nonlinear Autoregression Neural Network (NARNN) and Long-Short Term Memory (LSTM) approaches. Six model performance metric were used to select the most accurate model (MSE, PSNR, RMSE, NRMSE, MAPE and SMAPE). According to the results of the first step of the study, LSTM was found the most accurate model. In the second stage of the study, LSTM model was provided to make predictions in a 14-day perspective that is yet to be known. Results of the second step of the study shows that the total cumulative case increase rate is expected to decrease slightly in many countries.
Keywords: COVID-19; Forecasting; ARIMA; NARNN; LSTM; Modeling (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920304136
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920304136
DOI: 10.1016/j.chaos.2020.110015
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().