EconPapers    
Economics at your fingertips  
 

A variational inference framework for inverse problems

Luca Maestrini, Robert G. Aykroyd and Matt P. Wand

Computational Statistics & Data Analysis, 2025, vol. 202, issue C

Abstract: A framework is presented for fitting inverse problem models via variational Bayes approximations. This methodology guarantees flexibility to statistical model specification for a broad range of applications, good accuracy and reduced model fitting times. The message passing and factor graph fragment approach to variational Bayes that is also described facilitates streamlined implementation of approximate inference algorithms and allows for supple inclusion of numerous response distributions and penalizations into the inverse problem model. Models for one- and two-dimensional response variables are examined and an infrastructure is laid down where efficient algorithm updates based on nullifying weak interactions between variables can also be derived for inverse problems in higher dimensions. An image processing application and a simulation exercise motivated by biomedical problems reveal the computational advantage offered by efficient implementation of variational Bayes over Markov chain Monte Carlo.

Keywords: Block-banded matrices; Fast approximate inference; Image processing; Penalized regression; Positron emission tomography (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947324001397
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:202:y:2025:i:c:s0167947324001397

DOI: 10.1016/j.csda.2024.108055

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2024-12-06
Handle: RePEc:eee:csdana:v:202:y:2025:i:c:s0167947324001397
            
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy