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Abstract. This study employs an explainable machine learning (ML) framework to examine the regional dependencies of sur-

face ozone biases and their underlying drivers in global chemical reanalysis. Surface ozone observations from the Tropospheric

Ozone Assessment Report (TOAR) network and chemical reanalysis outputs from the multi-model multi-constituent chemical

(MOMO-Chem) data assimilation (DA) system for the period 2005–2020 were utilized for ML training. A regression tree-

based randomized ensemble ML approach successfully reproduced the spatiotemporal patterns of ozone bias in the chemical5

reanalysis relative to TOAR observations across North America, Europe, and East Asia. The global distributions of ozone bias

predicted by ML revealed systematic patterns influenced by meteorological conditions, geographic features, anthropogenic ac-

tivities, and biogenic emissions. The primary drivers identified include temperature, surface pressure, carbon monoxide (CO),

formaldehyde (CH2O), and nitrogen oxides (NOx) reservoirs such as nitric acid (HNO3) and peroxyacetyl nitrate (PAN). The

ML framework provided a detailed quantification of the magnitude and variability of these drivers, delivering bias-corrected10

ozone estimates suitable for human health and environmental impact assessments. The findings provide valuable insights that

can inform advancements in chemical transport modeling, DA, and observational system design, thereby improving surface

ozone reanalysis. However, the complex interplay among numerous parameters highlights the need for rigorous validation of

identified drivers against established scientific knowledge to attain a comprehensive understanding at the process level. Further

advancements in ML interpretability are essential to achieve reliable, actionable outcomes and to lead to an improved reanalysis15

framework for more effectively mitigating air pollution and its impacts.

Copyright statement. © 2024. California Institute of Technology. Government sponsorship acknowledged.

1 Introduction

Air pollutants such as particulate matter (PM) and ground-level ozone pose a significant risk to human health, ecosystems, and

climate. These pollutants are associated with a wide range of adverse health effects, contributing to approximately 8.1 million20

premature deaths annually in 2021 (Institute, 2024; Fleming et al., 2018). Additionally, ground-level ozone damages vegetation

and reduce crop yields (Mills et al., 2018). Accurate assessment and prediction of air pollutant concentrations are essential for
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evaluating their environmental impacts and to facilitating the development of effective mitigation strategies (Archibald et al.,

2020).

Ground-based monitoring networks, such as the United States Environmental Protection Agency’s (EPA) Air Quality System25

(AQS) and the European Monitoring and Evaluation Programme (EMEP), have provided continuous records of air pollutant

concentration. However, these networks are limited in geographic coverage and pollutant types. The data from these ground

observation networks, which were compiled under the Tropospheric Ozone Assessment Report (TOAR) activity (Schultz et al.,

2017), have been used to study long-term changes in surface ozone. These studies have revealed increases since 2000 in

certain remote and heavily polluted regions of East Asia (Gaudel et al., 2018). Furthermore, the ground observations have30

been utilized extensively to assess the performance of global atmospheric chemistry models (Young et al., 2018). The second

phase of TOAR (TOAR-II) aims to expand the observational network by including additional ground-based stations, especially

from new networks in China and India. Despite these advancements, substantial geographic regions, particularly in developing

countries where pollution levels are often severe, remain without adequate monitoring. This results in significant gaps in our

understanding of ground-level ozone variability over time and space, limiting our ability to accurately assess and mitigate its35

impacts.

Satellite observations, including those from the Ozone Monitoring Instrument (OMI) (Levelt et al., 2018), Infrared Atmo-

spheric Sounding Interferometer (IASI) (Clerbaux et al., 2009), Measurements Of Pollution In The Troposphere (MOPITT)

(Deeter et al., 2017a), and the Tropospheric Monitoring Instrument (TROPOMI) (Veefkind et al., 2012), have provided un-

precedented global pictures of air pollutants, including tropospheric ozone (Clerbaux et al., 2009; Bowman, 2013; Miyazaki40

et al., 2021a) and its precursors (Krotkov et al., 2016; Miyazaki et al., 2017; Bauwens et al., 2020; Elshorbany et al., 2024),

over the past few decades. However, these satellite measurements exhibit reduced sensitivity toward the surface, which limits

their ability to evaluate global spatial maps of near surface ozone. Recent advancements in satellite products, such as Tropo-

spheric Emissions Spectrometer (TES)-OMI, Atmospheric Infrared Sounder (AIRS)-OMI and IASI-Global Ozone Monitoring

Experiment-2 (GOME-2) multi-spectral retrievals (Fu et al., 2018; Colombi et al., 2021; Okamoto et al., 2023; Pennington45

et al., 2024), have enhanced the representation of lower tropospheric ozone, particularly in regions with limited ground-based

monitoring. Nevertheless, these products still face challenges in accuracy, largely due to the inherent retrieval uncertainties.

Their measurements are influenced by various factors such as cloud cover, which can result in spatial gaps and enhanced un-

certainties in the data. Furthermore, linking satellite-derived lower tropospheric ozone with surface ozone requires the consid-

eration of intricate chemical and physical processes (Colombi et al., 2021). While satellite measurements of precursor species,50

such as NO2, VOCs, and CO, provide valuable insights into the chemical regimes and production of ozone (Souri et al., 2024;

Elshorbany et al., 2024), they are not directly applicable to the estimation of surface ozone concentrations. Other ground-based

measurements, such as ozonesondes, lidar, and aircraft, provide accurate data on free tropospheric and vertical column ozone.

These have been used to validate satellite observations. However, they lack the capability to continuously monitor ground-level

ozone.55

Chemical transport models (CTMs) have been employed to generate global or regional maps of atmospheric composition

and aerosols, as well as to analyze their evolution. However, CTMs often exhibit substantial biases, such as overestimating
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boundary layer ozone by up to 12 ppb in the southeastern United States (Travis et al., 2016; Skipper et al., 2024) and surface

ozone by up to 20 ppb in the southeastern United States and Western Europe (Liu et al., 2022). These biases emerge from

difficulty of simulating complex physical and chemical processes and the inaccuracy of emissions inventories, which are60

affected by uncertainties in activity data, emission factors, and spatial-temporal allocations (Janssens-Maenhout et al., 2015).

Identifying the sources of air quality model errors and their underlying mechanisms is vital for improving air quality forecasting

and assessment. However, spatial error patterns often remain unclear due to the limited observational coverage.

Over the past decade, data assimilation (DA) techniques have markedly enhanced our capacity to integrate observational

data, address observational gaps, and provide comprehensive spatiotemporal representations of air pollutant variability at re-65

gional to global scales (Lahoz and Schneider, 2014). Previous studies have highlighted the value of simultaneously assimilating

ozone and its precursors to improve surface ozone estimates (Miyazaki et al., 2012, 2019; Sekiya et al., 2024). DA systems

have enabled the long-term integration of multiple satellite observations to generate decadal-scale atmospheric composition

reanalysis products (Inness et al., 2019; Miyazaki et al., 2020a). The global and regional chemical reanalysis products gener-

ated using the state-of-the-art DA systems have been applied in numerous applications, including air quality monitoring and70

attribution studies (Lacima et al., 2023; He et al., 2022a; Miyazaki et al., 2014, 2019, 2021b; Sekiya et al., 2023) and human

health impact assessment (Wang et al., 2024). Nevertheless, the quality of chemical DA and reanalysis remains largely limited

by the performance of the underlying model (Inness et al., 2019; Miyazaki et al., 2020c; Sekiya et al., 2024). The potential and

limitations of current chemical reanalysis products have been extensively discussed and summarized by the TOAR-II Chemical

Reanalysis Focus Working Group (Sekiya et al., 2024; Jones et al., 2024; Wang et al., 2024).75

In parallel, machine learning (ML) techniques have emerged as powerful tools in the field of Earth sciences (Sun et al.,

2022). ML has been employed to emulate Earth system models, accelerate computational processes, correct physical model

biases, and extend observational datasets. There is growing interest in utilizing ML techniques for air quality assessment and

improving the accuracy of air pollutant predictions (Hickman et al., 2024). For example, ML has been employed to emulate the

GEOS-Chem gas phase chemistry (Keller and Evans, 2019), predict ozone levels during wildfire events Watson et al. (2019),80

and generate a high-resolution global distribution of tropospheric ozone from sparse ground-based observations combined with

high-resolution geospatial data (Betancourt et al., 2022). Furthermore, the application of ML techniques has been extended

to the evaluation of nitrogen oxides (NOx) emission inventories (He et al., 2022b), as well as the simulation of simulate

tropospheric oxidant chemistry (Kelp et al., 2022) . Additionally, ML techniques have identified complex relationships among

variables, such as NOx reductions during the period of the global COVID-19 lockdowns (Keller et al., 2021) and the spatial85

patterns of meteorological and chemical influences on air quality (Kleinert et al., 2022). Furthermore, ML have been used to

correct physical model biases. For example, gradient-boosted decision trees (e.g., XGBoost) have been utilized to identify and

address potential systematic errors in ozone prediction models (Ivatt and Evans, 2020).

Explainable ML provides an opportunity to uncover the relationships between input variables and model outputs, thereby

offering insights into the drivers of air pollutant and model biases (McGovern et al., 2019). This capability is of particular value90

in the context of air quality assessments (Liu et al., 2022), where a comprehensive understanding of the factors contributing

to air pollution and model biases is essential for informed policy-making and the improvement of CTMs. Similarly, ML is
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expected to enhance our understanding of bias patterns and the drivers of chemical reanalysis biases, which are often linked to

the lack of observational constraints and inherent forecast model errors. The comprehensive information obtained from chemi-

cal DA systems provides critical inputs for ML training, thereby enabling improvements in pollution predictions. Furthermore,95

ML and DA can be effectively combined within a Bayesian framework to enhance physical models and estimate parameters

directly from observations (Geer, 2021).

In this study, we develop and apply a novel, explainable ML framework to identify the drivers of ozone bias in decadal

chemical reanalysis. By integrating information from chemical reanalysis and ground-based observations, our objective to

provide bias-corrected ozone estimates and valuable insights into the factors controlling bias in the reanalysis product. Section100

2 outlines the methodology, including the ML framework. Section 3 presents the results, focusing on predicted ozone biases and

identified drivers. Section 4 discusses the implications, limitations, and future directions of our approach. Section 5 concludes

the study.

2 Methodology

2.1 Data105

2.1.1 Chemical reanalysis MOMO-Chem

This study employs the comprehensive data set on the evolution of atmospheric composition and associated parameters ob-

tained from the MOMO-Chem framework (Miyazaki et al., 2020c). MOMO-Chem assimilated multi-species satellite observa-

tions to reproduce three-dimensional atmospheric composition and surface emission distributions. The local ensemble trans-

form Kalman filter (LETKF) (Hunt et al., 2007) was employed, which accounts for errors in the model transport and chemistry110

at each grid point and time step in the background error covariance. This approach allows for flow-dependent DA analysis and

simultaneous optimization of emissions and concentrations, thereby providing comprehensive constraints on the tropospheric

chemistry system. Parts of the MOMO-Chem system were utilized in the production of the Tropospheric Chemistry Reanalysis

version 1 (TCR-1) (Miyazaki et al., 2015) and version 2 (TCR-2) products (Miyazaki et al., 2020b).

This study utilizes the TCR-2 data set for the period 2005–2020 Miyazaki et al. (2020b) as ML inputs. The TCR-2 data115

is publicly available and has been used in numerous studies on atmospheric composition and emissions (Kanaya et al., 2019;

Miyazaki et al., 2017, 2019, 2021b; Miyazaki and Bowman, 2023). TCR-2 uses Model for Interdisciplinary Research on

Climate–Chemical atmospheric general circulation model for study of atmospheric environment and radiative forcing (MIROC-

CHASER) (Watanabe et al., 2011) as a forecast model. This model includes tracer transport, wet and dry depositions, and

emissions, as well as detailed photochemistry in the troposphere and stratosphere. The model calculates the concentrations of120

92 chemical species and 262 chemical reactions (58 photolytic, 183 kinetic, and 21 heterogeneous reactions). TCR-2 has a

T106 horizontal resolution (1.125◦ x 1.125◦) with 32 vertical levels from the surface to 4.4 hPa. Meteorological fields used by

TCR-2 are nudged towards the 6-hourly ERA-Interim (Dee et al., 2011).

4

https://doi.org/10.5194/egusphere-2024-3753
Preprint. Discussion started: 7 January 2025
c© Author(s) 2025. CC BY 4.0 License.



The assimilated data include tropospheric NO2 column retrievals from the QA4ECV version 1.1 level (L2) product for

the Ozone Monitoring Instrument (OMI), GOME-2 and the Scanning Imaging Absorption Spectrometer for Atmospheric125

Cartography (SCIAMACHY) (Boersma et al., 2017, 2018). Ozone retrievals are taken from the version 6 level 2 nadir data

obtained from the Tropospheric Emission Spectrometer (TES) (Bowman et al., 2006) and version 4.2 for the Microwave

Limb Sounder (MLS) for pressures of lower than 215 hPa (Livesey et al., 2018). Total column CO data are derived from the

version 7 L2 TIR/NIR product for the Measurements of Pollution in the Troposphere (MOPITT) (Deeter et al., 2017b). It

should be noted that the ozone retrievals assimilated do not contain information on surface ozone. However, the assimilation130

of precursors and free-tropospheric and stratospheric ozone provides indirect constraints on surface ozone (Miyazaki et al.,

2019). The performance of TCR-2 has been validated against independent surface and aircraft measurements (Miyazaki et al.,

2020b).

TCR-2 has been evaluated in comparison with other chemical reanalysis products, including Copernicus Atmosphere Mon-

itoring Service (CAMS) (Inness et al., 2019) and GEOS-Chem reanalysis. TCR-2 and CAMS showed reasonable agreement135

with each other and with independent observations in the free troposphere and tropospheric column (Huijnen et al., 2020).

The comparison results demonstrate the value of chemical reanalyses for elucidating historical and present-day tropospheric

ozone distributions. However, larger discrepancies have been identified near the surface. A comparison with surface ozone

observations revealed that all reanalyses tend to overestimate surface ozone, with annual mean biases exceeding 15 ppbv in

GEOS-Chem. A seasonal bias analysis indicates that the largest global mean surface ozone bias in GEOS-Chem occurs in140

September–November (18.3 ppbv), while the smallest bias is in December–February (14.2 ppbv). The largest mean biases for

TCR-2 and CAMSRA occurred in June-August, at 11.1 ppbv and 6.6 ppbv, respectively, while the smallest mean biases occur

in December–February, at 5.6 ppbv and 2.7 ppbv, respectively (Jones et al., 2024).

In this study, comprehensive information from MOMO-Chem reanalysis outputs, including various meteorological and

chemical variables, was utilized for ML analysis. To enable feasible scientific interpretation, restricting the number of input145

parameters used for ML training was a critical step. The selection of input parameters was guided by their relevance to ozone

chemistry and transport, while avoiding redundancy through correlation analysis (see Section 5.2). Following an evaluation

of the sensitivity calculations with varying input parameters, a total of 28 key variables were selected for use in the ML

calculations, as listed in Table 1. Previous studies on the ML application to air pollution (Liu et al., 2022) have emphasized

the importance of basic geographical parameters, such as latitude and day of the year to enhance the predictive performance of150

ML models. However, given that the primary objective of this study is to gain insights into model processes and observational

constraints, rather than to optimize prediction accuracy, these basic geographical parameters were excluded from our ML

predictions.

2.1.2 TOAR-II ground-based observations

The TOAR-II surface ozone database (Schultz et al., 2017) provides ozone metrics from approximately 23,000 surface sites155

globally. The data version used in this study does not encompass the majority of recent datasets from China and India, thereby

constraining the capacity to train the ML model under highly polluted conditions. The ML calculations employed daily max-
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Table 1. List of ML input parameters derived from MOMO-Chem reanalysis outputs, including key meteorological variables, chemical

species, and emissions.

Variable name Description Variable name Description

BrOX Bromine oxides coflux Carbom monoxide emissions

C10H16 Adamantane NO Nitric oxide

C2H6 Ethane NO2 Nitrogen dioxide

C3H2 Propene noxflux Nitrogen oxides emissions

C5H8 Isoprene olr Outgoing longwave radiation

CH2O Formaldehyde prcp Precipitation

H2O2 Hydrogen peroxide PS Surface pressure

HNO3 Nitric acid q Humidity

HO2 Hydroperoxyl radical rfluxld Radiative downward flux long-wave

N2O5 Dinitrogen pentoxide rfluxsd Radiative downward flux short-wave ‘

NH3 Ammonia t Temperature

OH Hydroxide u Zonal wind

PAN Peroxyacetyl nitrate v Meridional wind

CO Carbon monoxide ccover Cloud cover

imum 8-hour average (MDA8) ozone concentrations from both urban and non-urban surface sites. However, the reanalysis

product, with a spatial resolution of 1.125◦× 1.125◦, is unable to resolve local emissions and chemical processes that drive

ozone variations, particularly in urban areas, as similarly discussed in Young et al. (2018). While the selection of urban sites160

is of great importance for the evaluation of reanalysis biases, this was not addressed in the current study. Consequently, this

limitation may result in the biased estimations of reanalysis performance, particularly in regions where local-scale processes

are important.

2.2 ML approach

2.2.1 Random Forest Model165

In order to predict the reanalysis ozone bias with a given set of input variables, we employed a variant of the widely used

ensemble tree method, Random Forest (RF) (Breiman, 2001). RF is well-suited for a broad range of modeling and prediction

applications due to its robust performance, ease of implementation, and ability to provide explainability metrics for input

variables. Specifically, we implemented Quantile Random Forest (QRF) (Meinshausen and Ridgeway, 2006), which modifies

the loss function to predict both the mean and quantile values of the conditional distribution. The quantile values enable the170

estimation of prediction uncertainties. Furthermore, QRF addresses challenges posed by high-dimensional datasets, mitigating

issues related to unstable computations.
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2.2.2 Explainability metrics

We employed three methods to evaluate explainability: Feature importance (FI), conditional feature contribution (CFC) (Saabas,

2015; Kuz’min et al., 2011), and Permutation importance (PI) (Altmann et al., 2010). As outlined below, the three measures of175

explainability are complementary and assess distinct aspects of variable importance, including the impact on predicted values,

variability, and prediction accuracy. The FI and PI metrics compute the importance of each input variable on a global scale,

with respect to each input variable. CFC calculates the importance of each variable at each grid point locally.

FI represents an intrinsic functionality of RF/QRF that quantifies the predictor reduction in variance at each decision tree split

based on a specific input variable. These reductions are averaged across all trees in the forest to measures how much variability180

the true values gain or lose around their mean in a particular leaf/node based on an input variable. The unitless FI values are

normalized between 0 and 1, with values closer to 1 indicating greater importance. This metric provides a comprehensive

assessment of the global importance of each input variable.

CFC calculates the incremental changes in predicted values at each parent and child tree node of a decision tree for each

variable. Subsequently, the values are aggregated over all nodes in a path of a data point, and averaged across all trees in the185

forest. In contrast to FI, CFC offers a local assessment of importance for each variable at each grid point. This metric can be

explored both spatially and temporally, and its units correspond to those of the target variable (e.g., ppb for ozone bias). CFC

allows for spatiotemporal exploration of variable importance.

PI is a model-agnostic metric obtained by randomly permuting a single input variable. Following the random shuffling of a

variable, the model is refitted and the measure of accuracy is calculated. This is typically done using metrics such as root mean190

squared error (RMSE), based on a withheld set of data or through cross-validation. The reduction in accuracy when a variable

is permuted indicates its importance, independent of other inputs. While PI does not account for cross-correlations between

input variables, it can identify independent relationships and highlight inter-variable dependencies.

2.2.3 SHapley Additive exPlanations (SHAP)

Additionally, SHapley Additive exPlanations (SHAP) (Lundberg et al., 2020) were employed to attribute the contributions195

of individual variables to model predictions, which is a state-of-the-art framework for interpreting and explaining ML model

outputs. SHAP is rooted in cooperative game theory and distributes the "credit" or influence of each input variable in shaping

a model’s prediction in an equitable manner. This is achieved by considering all possible permutations of variable combina-

tions and their contributions. SHAP values generalize the concept of CFC, offering a model-agnostic perspective on variable

importance. Similar to CFC, SHAP enhances the transparency of model predictions by enabling local attribution of factors200

influencing each prediction. This facilitates a deeper understanding of the relationships captured by the model and fosters trust

in the intricacies of complex ML systems.
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2.3 Experimental settings

The ML inputs included surface ozone data, MDA8, from the TOAR data sets, which served at the ground truth, along with

outputs from the MOMO-Chem reanalysis. The TOAR station data were gridded in accordance with the MOMO-Chem reanal-205

ysis grid resolution of 1.125◦ × 1.125◦. For each reanalysis grid box, the median value of surface ozone was calculated using

all TOAR stations within the box. To ensure data quality, TOAR observations below 0 ppb or above 150 ppb were excluded.

For other reanalysis variables, daytime averages (8–15 local time) were derived from the 2-hourly reanalysis outputs and used

in the ML calculations.

To enhance computational tractability and avoid the influence of seasonality, particularly with regard to explainability met-210

rics, a separate QRF model was trained for each month. The cross-validation strategy involved withholding one year of data

for all grid locations for the purpose of testing, while the remaining years were used for training. This approach ensured that

the spatial coverage was maintained in the training dataset. The ML calculation utilized data over16 years (2005–2020), with

an equal number of cross-validation folds corresponding to the withheld years.

Two primary metrics were used to evaluate the ML performance: RMSE and percent variance explained (PVE). RMSE215

quantifies the average deviation between the actual and predicted values. PVE computes how much overall variance in the data

is explained by the ML model, with values ranging from 0 to 1. PVE values closer to 1 indicate that the model effectively

captures the underlying structures and patterns in the data.

2.3.1 Emulator runs

The ML framework was first evaluated in emulation mode to reproduce the reanalysis MDA8 fields. By leveraging the true220

global MDA8 state provided by reanalysis for evaluation, this framework allowed for the assessment and optimization of base-

line ML performance. Two emulator runs were conducted. The first used global reanalysis MDA8 data for training (Emugl).

The second used dense TOAR ozone sampling over three regions only (Emutoar). The TOAR sampled area encompassed

North America (20◦N–55◦N, 125◦W–70◦W), Europe (35◦N–65◦N, 10◦W–25◦E), and East Asia (20◦N–50◦N, 100◦E–145◦E).

In Emugl, the ML framework utilized global training data, excluding MDA8 itself, to demonstrate ideal performance under225

comprehensive data coverage. In Emutoar, the training was restricted to regions with dense TOAR coverage, allowing for an

assessment of the impact of limited observational data on the ability to represent global ozone distributions.

2.3.2 Bias predictions

Subsequently, the ML framework is used to predict the reanalysis ozone bias at each grid point on a daily basis. The predicted

bias is validated against the actual bias (reanalysis minus observations) over the TOAR observation locations. Meanwhile, the230

prediction provides information on the extended global patterns and the drivers of the ozone bias, including areas with no

observations.
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Figure 1. Probability distributions of surface ozone for January and July in North America, Europe, and East Asia. Blue lines represent

observed ozone concentrations, while red lines represent ML-predicted values. The figure also includes the mean and standard deviation of

the observed ozone, as well as the RMSE and PVE of the ML predictions, to evaluate model performance across regions.

3 ML performance

3.1 Ozone emulator runs

In order to evaluate the overall predictive skill of the ML framework, we first conducted emulator runs using global input data235

(Emugl). As shown in Fig. 1, the emulator successfully reproduced regional ozone patterns at mid latitudes of the northern

hemisphere (NH), with the regional RMSEs ranging from 4.02 to 4.69 in January and from 5.87 to 9.08 ppb in July. The PVE

values ranged from 0.65 to 0.83, indicating that the ML model effectively captures the underlying structures and patterns. The

global distribution of ozone was also well predicted, with RMSE values below 8 ppb over most land areas and below 5 ppb

over oceans at the grid scale (Fig. 2). This confirms the ability of the ML framework to capture the overall spatial variability240

of ozone. However, notable discrepancies were found in the central Pacific, where relative errors exceeded 30

To examine the influence of limited observational data, an additional emulator run was performed using reanalysis data

only from regions with dense TOAR observations (North America, Europe, and East Asia) for ML training (Emutoar). In

comparison to Emugl, Emutoar demonstrated increased errors in regions such as Central Africa, India, South Asia, Siberia,

and the Northwestern Pacific (Fig. 2). This suggests that observational constraints from the TOAR regions, i.e., primarily245

industrialized areas in the NH mid-latitudes, are inadequate for capturing ozone variability in the tropics and polar regions.

9

https://doi.org/10.5194/egusphere-2024-3753
Preprint. Discussion started: 7 January 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 2. Spatial maps of surface ozone in July, derived from (left) MOMO-Chem reanalysis used for training, with RMSE from the emulator

run presented in (center) ppb and (right) %. The upper panels depict the results of the ML emulator trained with global MOMO-Chem inputs

(Emugl), while the lower panels depict the results of the emulator trained with data limited to TOAR coverage regions (Emutoar).

This likely reflects discrepancies in the underlying ozone driving mechanisms. In other regions, the performance of Emutoar

was comparable to Emugl, indicating that dense observational coverage in the TOAR regions can inform broader ozone

distributions. The comparison between Emutoar and Emugl provides insights into the robustness and potential uncertainties

of ML-predicted biases trained on limited TOAR locations, as discussed further in Section 5.1.250

3.2 Ozone bias prediction

As depicted in Fig. 3, the actual ozone bias, defined as the reanalysis minus TOAR observations, exhibits a broad Gaussian

distribution with mean regional values of 4.93-10.67 ppb in January and 11.3-30.29 ppb in July across the three regions. The

bias variability is also greater in July, with standard deviations ranging from 9.19 to 11.54 ppb in January and from 10.31

to 16.46 ppb in July. This reflects the influence of seasonal differences in ozone dynamics. The ML prediction accurately255

represents he overall actual bias pattern, with RMSE values of 7.8-8.4 ppb in January and 9.6-14.7 ppb in July. Among the

regions, East Asia exhibited the largest RMSE values in both seasons. The ML prediction systematically underestimates bias

variability across all regions, indicating an underestimation of the occurrence of extreme (both positive and negative) bias

values. The larger prediction errors for bias prediction, in comparison to the emulator runs (c.f., Section 3.1), underscore the

inherent challenges associated with bias prediction. These challenges likely are likely attributable to errors in the observational260

data and limitations in the representativeness of the data used for bias estimation.
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Figure 3. Probability distributions of surface ozone bias for January and July in North America, Europe, and East Asia. Blue lines represent

actual bias (reanalysis minus TOAR observations), while red lines represent ML-predicted bias values. The figure also includes the mean

and standard deviation of the actual bias, as well as the RMSE and PVE of the ML predictions.

As shown in Fig. 4, the reanalysis ozone bias relative to the TOAR observations (i.e., the true bias) exhibits a distinct seasonal

pattern, with regional monthly mean positive bias maxima occurring in summer by about 30 ppb for North America in July,

13 ppb over Europe in June, and 24 ppb over East Asia in July. The mean ozone bias is smallest during the winter months

across all three regions, with values ranging from approximately 4 to 10 ppb. The smallest bias occurred in January over North265

America and East Asia, and in February over Europe. The ML predictions well capture the temporal patterns of the actual bias

at the regional scale, with temporal correlations of 0.85–0.89. Meanwhile, regional ozone bias also exhibits distinct interannual

variability. For example, East Asia experienced larger positive biases during 2005–2008, North America exhibited a slight

decreasing trend in biases from 2005 to 2012, and Europe showed greater biases during 2016–2020 compared to earlier years.

These variations are likely influenced by a number of factors, including changes in the coverage of ground observations, shifts270

in the chemical regimes, and discontinuities in the assimilated satellite measurements that were used in the chemical reanalysis

(Miyazaki et al., 2020b).

Despite the overall agreement, the ML predictions failed to capture certain anomalies. For example, the ML model overesti-

mates the small bias during the winter of 2010 and the large bias during the summer of 2016 in Europe, while underestimating

the large biases during the summers of 2005, 2006, and 2008 in East Asia. These discrepancies may be indicative of an in-275

sufficient representation of specific regional processes or limitations in the input data used for ML training. Nevertheless, it is

unlikely that these limitations will have a significant impact on the interpretation of the drivers behind the mean bias patterns,
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Figure 4. (Top) Climatological seasonal variations and (bottom) full time series of actual (black) and ML-predicted (blue) surface ozone bias

in ppb over North America, Europe, and East Asia for the period 2005–2020. Shaded areas represent the one-sigma standard deviation for

each month, highlighting the variability in the bias.

as the ML framework has demonstrated the capacity to effectively captures the dominant temporal and spatial structures of

ozone bias.

3.3 The extended global bias patterns280

The lack of sufficient global surface observations resulted in a limitation of current knowledge and estimates of surface ozone

bias patterns in chemical reanalyses and CTM simulations to specific regions, predominantly in parts of Europe, the United

States, and East Asia, as shown in the Fig. 5 upper panels. A comparison with the TOAR observations revealed significant

biases in the chemical reanalysis ozone exceeding 20 ppb in southeastern Australia and Mexico in January and 25 ppb in South

Korea and the southeastern United States in July.285

The application of the ML model presents a valuable opportunity to extend the global understanding of ozone bias patterns.

In January, the ML model indicates the presence of widespread positive biases over land at low and mid-latitudes, with values

reaching up to 10 ppb over eastern China, 20 ppb over India, and 8 ppb over Western Europe, as illustrated in the Fig. 5 lower

panels. Similarly, substantial positive biases are predicted at approximately 20 ppb over Central Africa and 15 ppb over South

America. Conversely, ML predicts negative biases of up to 15 ppb at high latitudes north of 60◦N.290

In July, the predicted positive biases over land are typically larger than those predicted in January. These include biases of up

to 30 ppb over the Eurasian continent, eastern and northern parts of North America, Central and Western Africa, and Southeast

Asia. The positive biases are especially pronounced in regions such as the southeastern United States, Central Africa, Eastern

China, Malaysia, and Indonesia over land. Conversely, negative biases of approximately 10 ppb are predicted for the high

latitudes of the southern hemisphere (SH), similar to the negative biases observed in the NH high latitudes in January.295
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Figure 5. Spatial distributions of reanalysis surface ozone bias (in ppb): actual bias at TOAR observation sites (top panels) and ML-predicted

bias across the globe (bottom panels) for January (left) and July (right), averaged over the period 2005–2020.

The spatial distribution of the predicted biases appears to correlate with multiple factors, including topography, urbanization,

forested areas, and precursor emissions. These factors will be discussed in Section 4. Meanwhile, significant uncertainties are

expected in regions where the chemical and physical processes driving ozone biases are not well-represented by ML. This will

be discussed in Section 5.1.

4 Ozone bias drivers300

4.1 Regional bias

The explainable ML framework is employed to identify the primary drivers of surface ozone bias. The analysis reveals distinct

regional patterns among the top 20 identified drivers on the annual scale (Fig. 6). In most cases, the three approaches yield

comparable results with regard to the relative importance assigned to the input variables. Surface pressure emerges as one of

the most significant contributors across all three regions, underscoring its capacity to modulate ozone bias through a range of305

factors, including topographical influences and synoptic-scale weather patterns. Temperature is another critical driver, affecting

ozone by influencing chemical reaction rates, local wind patterns, and atmospheric stability. These findings emphasize the

fundamental role of meteorological parameters in shaping surface ozone distributions, aligning with previous studies (Weng

et al., 2022).
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Figure 6. Top 20 contributors to regional ozone bias over North America, Europe, and East Asia, identified using three explainability

approaches: FI, CFC, and PI.

Figure 7. Monthly changes in the top contributors to regional ozone bias for North America, Europe, and East Asia, estimated from the

combination of the FI and CFC approaches. Bubble size and color represent the magnitude of the impact of each contributor.

Other significant contributors include HNO3, NOx emissions, CO emissions, N2O5, CH2O, and PAN, though their relative310

importance varies significantly among regions. For instance, East Asia demonstrates more pronounced influences from HNO3,

NOx emissions, and CO emissions, which many be attributed to the elevated levels of industrial activity. In contrast, CH2O

exerts the most significant influence in North America, likely reflecting the strong biogenic emissions. PAN, as a reservoir

species, also plays a notable role across all regions due to its involvement in ozone formation. These contributors are linked to

both anthropogenic and natural processes, including industrial activities, biomass burning, agricultural practices, and wildfires.315

As illustrated in Fig. 7, the seasonal variation in ozone bias drivers exhibits pronounced regional characteristics across three

regions. As detailed below, these findings highlight the significant regional dependence of seasonal bias drivers, reflecting

the complex interplay of meteorological, chemical, and emission-related factors specific to each region. Moreover, common

seasonal patterns are evident across regions, such as the influence of temperature during winter and HNO3 during summer,

emphasizing the existence of universal processes that govern ozone bias dynamics.320
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In Asia, HNO3 emerges as a dominant contributor from March to November. The ozone bias is largely influenced by

temperature and NOx emissions from October to March, while contributions from N2O5 peak in summer, C10H16 in winter,

and H2O2 in January. Additionally, CO emissions and concentrations exhibit broadly enhanced contributions during the spring

and summer months. In Europe, surface pressure and temperature are the primary contributors from October to January. CO

emissions show a robust influence throughout the year, with the exception of February and March. Enhanced contributions from325

C2H6 and CH2O are found during early summer months, with HNO3 exerting its largest influence during the summer season.

The contributions of NH3, NOx emissions, and CO are moderate throughout the year. In North America, temperature plays

a prominent role from November through April, while CH2O becomes the dominant contributor from May through October.

Other notable contributors include HNO3 from late spring through autumn, surface pressure in early summer and winter, and

PAN in early summer.330

4.2 Spatial pattern

This section examines the spatial patterns of ozone bias drivers, classified into primary categories such as meteorological

parameters, combustion processes, biogenic and agricultural sources, and reservoir species. By analyzing these spatial distri-

butions, our objective is to identify the predominant contributors to bias in different regions and their associated processes.

Spatial maps of selected key contributors are presented in Fig. 8.335

4.2.1 Meteorological parameters

During the boreal winter months, the contribution of surface pressure is particularly pronounced in northwestern China (Fig.

8a), indicating that the winter Siberian High and the East Asian monsoon circulation exert a significant influence on ozone

transport in the region. During the boreal summer months (figure not shown), the area of strong surface pressure contribution

shifts southward and is largely diminished over eastern and southern China. This pattern is likely driven by the summer Asian340

monsoon system, which has been identified as a key factor in surface ozone variability (Li et al., 2018). The sign of the surface

pressure contribution reverses between winter and summer in China, with an increasing positive bias in winter and a decreasing

positive bias in summer, which partially offsets the positive biases induced by other factors in summer. In contrast, in eastern

and southern China, where air pollution is severe, the contribution of surface pressure is much smaller throughout the year.

In Europe, surface pressure plays a significant role in the formation of ozone bias in limited areas, including Spain, northern345

Italy, and Norway, during winter (Fig. 8a). In these areas, it tends to increase the positive ozone bias. This indicates that surface

pressure is associated with local biases, which are influenced by wintertime synoptic weather patterns. During summer (figure

not shown), the impact of surface pressure in these regions is reversed, leading to a reduction in the positive bias. However,

when compared to other variables, the overall contribution of surface pressure is minimal across Europe on the regional scale.

This is reflective of the dominant role of chemical parameters in ozone bias in major polluted areas, similar to the results350

obtained for southeastern China.

Over the western United States, the contribution of surface pressure displays a complex pattern that follows topographic

features. During winter, the surface pressure’s contribution tends to increase the positive bias, particularly over the western
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Figure 8. Spatial maps of the contributions of key parameters to monthly ozone bias, showcasing prominent drivers during specific months.

The maps illustrate the influences from meteorological processes, combustion sources, biogenic and agricultural emissions, and NOx reser-

voir species.

coastal mountainous regions and the northwestern United States (Fig. 8a). During the boreal summer months, this contribution

undergoes a shift, resulting in a reduction of the positive bias across the western half of North America. Additionally, there is a355

notable influence of surface pressure over the coastal regions of Mexico, the northwestern United States, and the west coast of

South America (figure not shown). Among the various parameters, surface pressure has the greatest impact on increasing the

positive bias on a regional scale in North America during summer (Fig. 9). This highlights its significant role in shaping ozone

bias patterns in specific regions, particularly under the influence of complex topography.

The influence of temperature on ozone bias is driven by a variety of mechanisms, including its impact on gas-phase reaction360

rates, atmospheric stability, and vertical mixing. The impact of temperature on ozone bias varies by season and latitude. In

most cases, positive ozone bias increases at low and mid-latitudes, while at high latitudes, it is reduced (Fig. 8b). The increased
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positive bias is particularly pronounced in regions such as the western United States, the Middle East, eastern Africa, the Sahara

Desert, and western Australia. The SHAP analysis indicates that temperature is a primary factor contributing to positive bias

over North America (Fig. 9). Furthermore, temperature is identified as the predominant driver of ozone bias at low latitudes365

in regions such as North Africa, South Africa, the Middle East, eastern South America, western North America, and parts of

Siberia during boreal summer (Fig. 10). At high latitudes, temperature plays a dominant role during boreal winter.

Our analysis further demonstrated that radiation exerts a substantial influence on ozone bias through its impact on photo-

chemical reactions, thermal balance, and subsequently atmospheric circulation (figure not shown). For instance, photochemical

reactivity at the surface is influenced by incoming solar radiation, which is modulated by humidity, water vapor, and ozone370

above the surface. Furthermore, ozone levels above the surface impact ozone bias not only through downward transport but

also by affecting incoming radiation. The spatial analysis demonstrates that downward short-wave radiative flux at the surface

exerts a widespread influence, contributing to increased positive ozone bias at low and mid-latitudes. This effect is especially

pronounced over Northern and Central Africa, the Southwestern United States, and South Asia, particularly during the spring

and summer seasons. This highlights the interconnected dynamics of radiative and photochemical processes.375

4.2.2 Combustion sources

Combustion processes, including industrial activities and wildfires, release CO along with a multitude of other chemical com-

pounds. CO is a primary precursor to ozone and plays a substantial role in chemical ozone production. For example, it has

been estimated that ozone produced by wildfires contributes approximately 3.5% of the global total tropospheric ozone pro-

duction (Jaffe and Wigder, 2012). According to the ML analysis, the impact of CO emissions on ozone bias is widespread380

across extensive emission regions, including East and South Asia, Central Africa, North America, and Europe (Fig. 8d). This

indicates that CO emissions exert a considerable influence on ozone bias over and downwind of regions where combustion oc-

curs. Conversely, CO concentrations tend to reduce the positive ozone bias over South America, Central Africa, and Southeast

Asia, particularly in areas and periods of active biomass burning (Fig. 8c). This indicates that the effect of extremely high CO

concentrations from wildfires and anthropogenic activities on ozone bias differ from those associated with moderate CO levels.385

The differing roles of CO emissions and concentrations in ozone bias are not fully understood. Nevertheless, it is likely that the

non-linear relationships inherent in chemical processes play a significant role. For example, elevated CO levels may saturate

specific chemical pathways or disrupt the balance between ozone production and loss. This can result in divergent impacts

depending on atmospheric conditions. These findings highlight the complexity of CO’s role in ozone bias.

The production of ozone in urban areas is primarily regulated by chemical regimes that are determined by the concentrations390

of NOx and volatile organic compounds (VOCs) (Sillman, 1999). However, our ML assessment indicated that the direct impact

of NOx emissions on ozone bias was limited (figure not shown). In contrast, NOx reservoir species, such as peroxyacetyl nitrate

(PAN) and nitric acid (HNO3) were shown to have significant impacts on ozone bias, as discussed in Section 4.2.5.

Ethane (C2H6), a hydrocarbon that contributes to ozone formation, has a substantial impact on ozone bias across a range

of geographical regions, including industrial zones, biomass burning areas, and oil basins. Significant impacts were observed395

over central Africa, northern India, northeastern China, Indonesia, and the northern parts of North America (Fig. 8e). The
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Figure 9. SHAP waterfall plots depicting individual parameter contributions to predicted ozone bias in July during 2005–2020. Positive

contributions (red) and negative contributions (blue) represent the extent to which each parameter increases or decreases the predicted ozone

bias, offering insights into the key drivers of ozone bias variability.

impact of C2H6 on ozone bias is especially pronounced over the mid-latitudes of the NH during the summer months. In eastern

China, C2H6 notably increases the positive ozone bias, contributing a notable portion of the total bias. According to emission

inventories, the global C2H6 source is estimated to be 13 Tg yr−1, with contributions of 8.0 Tg yr−1 from fossil fuel production,

2.6 Tg yr−1 from biofuel combustion, and 2.4 Tg yr−1 from biomass burning (Xiao et al., 2008). However, C2H6 emissions400

remain highly uncertain, which could potentially lead to biased ozone estimates. The incorporation of new satellite retrievals of

C2H6 from CrIS (Brewer et al., 2024) into reanalysis frameworks has the potential to reduce uncertainties in C2H6 emissions

and, consequently, improve ozone estimates.

Wildfires emit substantial amounts of chemical compounds, including black carbon, CO, PAN, NOx, and VOCs (Permar

et al., 2021). These emissions impact regional ozone distributions (Cooper et al., 2024; Jin et al., 2023). The elevated contri-405

butions of these species in regions with biomass burning regions are evident in the ML calculations. For example, PAN exerts

significant impacts in central Africa and South America (Fig. 8i). Formaldehyde (CH2O) also exhibits pronounced seasonal

variations driven by biomass burning emissions in tropical regions (De Smedt et al., 2008), exerting a considerable influ-

ence on ozone bias over tropical South America, central Africa, and Southeast Asia (Fig. 8f). Furthermore, the presence of
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VOCs in wildfire plumes, when combined with the NOx content of urban air, result in a deterioration of urban air quality (Xu410

et al., 2021). Optimizing wildfire emissions within the reanalysis framework by assimilating supplementary datasets, such as

TROPOMI and CrIS CH2O and CrIS PAN data, could facilitate more comprehensive corrections to ozone production associ-

ated with wildfire events. While this study focuses on the climatological patterns of ozone bias drivers, future research should

assess the impact of individual wildfire events on ozone and its model bias using explainable ML. Such investigations will be

essential for enhancing the accuracy and utility of chemical reanalysis products in capturing event-specific ozone dynamics415

and their contributions to long-term atmospheric changes.

4.2.3 Biogenic sources

Various chemical species are emitted by vegetation, but the relative importance of each biogenic species on ozone remains

largely uncertain. This is due to the fact that their contributions are influenced by a range of factors, including meteorological

and chemical conditions, as well as vegetation types. Among these species, isoprene (C5H8) is recognized as one of the most420

significant VOCs at regional scales due to its strong impact on ozone formation. The contributions of C5H8 exhibit distinct

spatial and temporal patterns, which mirror the spatial distribution of its sources and the ozone chemical regimes (Fig. 8h).

C5H8 tends to reduce positive ozone biases. However, whether it reduces ozone bias depends on the background bias conditions,

which are influenced by many other contributors (Fig. 9). As anticipated, ML highlights the broad impact of C5H8 over land,

notably in forested zones such as central Africa, South Asia, South America, and Australia, where biogenic emissions are425

pronounced (Guenther et al., 2012). ML uniquely assesses both the sign (positive or negative) and the quantitative contribution

of C5H8 to ozone bias, therefore offering deeper insights into its role.

The strong seasonal variations in CH2O are largely attributed to the oxidation of biogenic VOCs. Its impact on ozone bias

is particularly pronounced in the eastern United States and southern China during the summer season and in Southeast Asia

during the dry season (Fig. 8f). Consequently, CH2O emerges as a significant contributor to ozone bias in these regions, making430

it one of the most important bias drivers at regional scales (Fig. 9). In Europe, where biogenic VOC emissions are lower, the

contribution of CH2O is less pronounced.

4.2.4 Agricultural sources

Ammonia (NH3) is predominantly emitted from agricultural sources, accounting for over 80% of the global total NH3 emis-

sions. This is largely attributed to the pervasive utilization of nitrogen fertilizers in numerous countries. NH3 reacts with other435

chemical compounds to form aerosol particles, including PM2.5. Elevated amounts of these particles can have severe environ-

mental and health impacts. The impact of NH3 on ozone is more indirect, occurring primarily through alterations in NOx levels

and the oxidative capacity of the atmosphere (Pai et al., 2021). The results of the ML analysis indicates a distinct spatial pattern

of NH3 influence on ozone bias, with notable contributions observed in regions with elevated agricultural emissions (Fig. 8g).

These areas include Western Europe, eastern and northern India, East China, and the southern and eastern United States. These440

results highlight the necessity of incorporating complex chemical interactions into the assessment of ozone bias. Moreover,
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they indicate that incorporating NH3 emission estimates (Cao et al., 2022) into the reanalysis framework could enhance the

efficacy of ozone reanalysis.

4.2.5 NOx reservoirs

While NOx emissions and concentrations have a limited impact on ozone bias broadly, the reservoirs, HNO3 and PAN, exert445

significant effects. HNO3, primarily produced from anthropogenic NO emissions, emerges as an important driver of ozone

bias. HNO3 can modulate ozone production efficiency. The enhanced contributions, particularly over eastern Asia, eastern and

northern India, eastern Saudi Arabia, and South Africa (Fig. 8j), highlight the critical role of chemical conversion processes

between NOx and HNO3 in accurately predicting surface ozone levels.

Similarly, PAN, another reservoir species derived from NOx, is identified as a significant contributor to ozone bias. In colder450

conditions, the lifetime of PAN is considerably longer, enabling it to be transported over long distances in the free troposphere,

where it plays a critical role in the long-range transport of ozone precursors (Shogrin et al., 2023). At the surface level over

polluted regions, the contribution of PAN to ozone bias is more localized to its source regions, particularly industrialized areas

and regions affected by wildfires. For instance, increased ozone biases are observed over eastern China and the eastern United

States due to the influence of PAN (Fig. 8i). Additionally, PAN contributes considerably to ozone bias in remote regions, such455

as the tropical oceans situated downwind of regions with high emissions of pollutants, where it tends to reduce positive ozone

biases. These findings underscore the significant role of PAN in influencing surface ozone bias both locally and remotely.

Furthermore, they highlight the importance of accurately representing NOx-PAN conversion processes in chemical models to

improve ozone analysis.

4.2.6 Dominant contributing parameters460

The ML analysis demonstrates that the principal parameters responsible for surface ozone bias exhibit unique spatial patterns

that vary significantly by season (Fig. 10). These systematic patterns reflect the spatial variability of factors such as meteoro-

logical conditions, chemical regimes, and natural and industrial activities. The intricate nature of these distributions highlights

the challenges in identifying and addressing ozone biases in a comprehensive manner.

In numerous regions and seasons, CH2O emerges as the predominant contributor, indicating the prevalence of VOC-limited465

ozone regimes. This finding highlights the need to evaluate emissions inventories and refine the representation of chemical

processes involving CH2O and other VOCs, with the aim of improving the accuracy of reanalysis ozone. Temperature is also

s a critical factor, particularly in high latitude regions in both hemispheres during January and October, as well as in regions

such as Northern and Southern Africa and the Middle East during July. In these areas, temperature influences various factors,

including chemical reactivity and land and atmospheric conditions. In regions with distinctive topography, such as the NH470

mid-latitudes and the Andes Mountains in the SH, surface pressure emerges as a dominant factor. This reflects the complex

interplay between topography and atmospheric conditions in shaping ozone bias patterns.

In low-latitude land regions, particularly the Middle East, Africa, and Central America, downward shortwave radiation is

identified as the most influential parameter in April. In tropical oceanic regions, PAN dominates ozone bias in July, reflecting
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Figure 10. Spatial maps of the top contributors to the predicted ozone bias across all ML input variables for each location in January, April,

July, and October.

the influence of transported precursors and photochemical processes. In areas with exceptionally high CO emissions, such as475

eastern China in October and central Africa in July, CO emerges as the dominant contributor, emphasizing the importance of

accurately characterizing CO emissions and CO-related chemical processes in these areas. Similarly, C2H6 is identified as the

dominant contributor over central Africa in July, which corresponds to intense biomass burning activities.

While these findings on influential parameters provide valuable insights into the variability of ozone bias, their interactions

with other factors through complex chemical and physical processes present significant challenges for interpretation. Focusing480

solely on the most influential parameters may result in an oversimplification of the analysis, as these interactions often obscure

essential underlying mechanisms. Furthermore, while ML-based attribution approaches provide detailed insights, they may

exhibit abrupt temporal changes that are difficult to understand given our current scientific knowledge. The significance of

these estimates is therefore questionable. These limitations underscore the need for further refinement of the ML methodology

to improve the reliability and interpretability of results.485
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Figure 11. Spatial maps of ML-predicted ozone bias (left) and its associated uncertainty (right) for January 1st, 2005 (top panels), and July

1st, 2005 (bottom panels). The maps illustrate the regional variations in predicted bias and the corresponding confidence levels of the ML

estimates.

5 Discussion

5.1 Uncertainty distributions

Uncertainty quantification (UQ) is essential for interpreting ML results. Incorporating comprehensive UQ into the ML frame-

work provides direct insights into the confidence of the bias predicted. As illustrated in Fig. 11, the spatial and temporal patterns

of estimated uncertainties are obvious, with larger uncertainties estimated over polluted regions. It it noteworthy that the spa-490

tial pattern of uncertainty exhibits some discrepancies from that of the predicted bias. For example, the relative uncertainty

value in comparison to the predicted bias is lower over oceans but higher over land, particularly in the tropics and SH. These

patterns align with potential error distributions identified in the emulator runs (Section 3.1). The uncertainty maps are of value

in assessing the utility of bias-corrected ozone fields in informing ozone variations.

To further investigate uncertainty distributions, a local clustering analysis embedded within the ML framework was con-495

ducted using the mini-batch KMeans clustering algorithm (Sculley, 2011), which is a variant of the standard KMeans cluster-

ing algorithm (Lloyd, 1982) and uses mini-batches of data samples to improve computational efficiency while maintaining the

same optimization objective. The mini-batch KMeans clustering is an iterative algorithm consisting of three major steps: (1)

the random selection of data samples to form a mini-batch, (2) the assignment of each data sample to the nearest cluster cen-
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Figure 12. Local model clustering map of surface ozone on July 1st, 2005, estimated using MOMO-Chem chemical reanalysis outputs. The

map illustrates spatially distinct regions grouped by similar ozone variability patterns and dominant contributing factors, with each color

denoting a unique cluster.

troid with the least squared Euclidean distance, and (3) the updating of the cluster centroids for data samples assigned to each500

cluster. These steps are repeated until the assignments remain unchanged and the cluster centroids become stable, indicating

convergence.

The local clustering analysis categorized regions with similar ozone variability and driving factors. In the context of ML

predictions, observational data are expected to impose similar constraints within each local area or among similar clusters,

leading to a common uncertainty distribution across grid points within the same cluster. The number of observations within a505

cluster is considered to be a critical determinant of ML prediction uncertainty. Regions with sparse or no observational data

are likely to have less constrained ML predictions, resulting in higher associated uncertainties.

As illustrated in Fig. 12, the cluster analysis revealed the existence of distinct regional ozone patterns, which appear to be

influenced by a number of regional factors, including meteorological conditions, land use, population density, and industrial

activities. For example, the United States, Western Europe, and parts of East Asia were grouped into the same cluster, indicating510

that the ozone driving mechanisms are similar. The similarity between the regions also suggests that observational information

from these regions can be shared in order to reduce the uncertainty of ML predictions within that cluster. The agreement

between the spatial patterns of uncertainty distributions (Fig. 11) and the clustering analysis (Fig. 12) highlights the value of

clustering in understanding the drivers of ML uncertainty. Furthermore, the clustering analysis can improve ML predictive

performance by identifying region-specific patterns and dominant factors, facilitating the development of localized models that515

better capture the unique dynamics of each region.
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5.2 Challenges to scientific interpretation

The application of explainable ML at the process level is frequently constrained by the selection of input parameters, par-

ticularly when the input variable set is extensive. Silva and Keller (2024) emphasized the necessity for circumspection when

applying explainable AI methods to datasets with highly correlated or dependent features. Such applications may yield spuri-520

ous process-level explanations. They recommended that the current generation of explainable AI techniques be primarily used

for understanding system-level behavior, with caution when applying them for process-level scientific discovery in physical

sciences.

We encountered similar challenges. Some bias drivers identified by the explainable ML framework lacked scientific plau-

sibility, particularly when a considerable number of input variables were included. This is likely attributable to the elevated525

probability of selecting spurious importance features among highly correlated variables. There are substantial correlations

among chemically related species in the reanalysis outputs, with covariance patterns that vary substantially over time and

space (figure not shown). Such correlations can introduce spurious signals into driver analyses, thereby complicating the in-

terpretation of ML results. To address this issue, we conducted sensitivity analyses using ML to evaluate whether the input

datasets avoided spurious signals while retaining the essential scientific information about bias drivers. Despite these efforts,530

ensuring robustness remains a significant challenge.

It is essential to validate the results of ML through the use of independent methodologies. For instance, CTM sensitivity

experiments may be employed to introduce perturbations to the parameters identified as significant drivers by ML and then

to evaluate their influence on ozone. For example, ML with a large number of input parameters identified NH3 and methanol

as significant contributors to ozone bias across diverse regions during specific months. Nevertheless, CTM simulations with535

a perturbation (e.g., by 10 %) in NH3 or methanol showed only marginal impacts on ozone. Such discrepancies in their

implications highlight the necessity for comprehensive validation prior to deriving to process-level insights from ML results.

Reducing the number of input variables, as conducted in this study through correlation analysis, and also with a focus on

specific scientific objectives, can assist in minimizing these challenges. However, this approach may also restrict the potential

to uncover unexpected scientific findings. Further advancements in explainable AI techniques are essential to fully leverage the540

comprehensive outputs from chemical reanalysis and CTMs, thereby enabling a more accurate and detailed understanding of

bias drivers.

5.3 Different drivers of ozone and its model bias

Comprehensive analysis of factors influencing ozone variability can be conducted using CTM sensitivity experiments and

source-receptor relationship analyses. These approaches provide detailed insights into the physical and chemical processes545

that drive ozone dynamics. However, these methods are computationally expensive and have limited capacity to assess the

full range of potential drivers across different regions and timescales. In contrast, explainable ML offers a complementary

perspective, providing instantaneous and comprehensive insights into the drivers of ozone variability across large datasets.

Regarding model bias drivers, the information is limited due to the sparse distribution of validation data. ML can address this
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limitation by providing detailed spatial and temporal information on both ozone concentrations and biases. Such insights are550

of great value in the improvement of physical models.

The primary drivers identified through ML demonstrate notable discrepancies in their impact on ozone concentrations and

model bias. For example, BrOx was identified as a significant driver of surface ozone concentrations. However, its impact on

ozone bias was found to be negligible (figure not shown). Similar inconsistencies were observed for other parameters, making it

challenging to fully comprehend the underlying reasons for these discrepancies. It is possible that poorly characterized model555

parameters, such as precursor emissions from biogenic or anthropogenic sources, may have a more pronounced impact on

model biases than on variability. This indicates the necessity for further effort to provide their scientific interpretation of both

drivers. It may also indicate the presence of spurious signals in the ML driver analysis, which also requires closer consideration

and validation.

5.4 Implication for improving model, observation, and reanalysis560

The current chemical reanalysis is constrained by limitations due to the reduced sensitivity of assimilated measurements toward

the surface, which results in insufficient direct observational constraints on surface ozone. The assimilation of precursor species

such as NOx and CO provides comprehensive constraints on the spatial and temporal patterns of surface ozone. However,

certain reanalysis bias patterns were commonly found in CTM simulations that did not incorporate any DA. This indicates

that the bias driver information derived from chemical reanalysis can inform improvements in CTMs. Furthermore, these565

insights could be applied to correct biases in future ozone predictions (Liu et al., 2022). Nevertheless, ML does not provide

guidance on how to modify model processes. Modifications to CTMs could entail the introduction of new chemical reactions,

improvement or removal of outdated parametrization, or adjustment of parameters such as chemical reaction and photolysis

rates. To ensure these updates are scientifically robust, proposed changes must align with existing knowledge derived from

laboratory experiments and observations not yet integrated into the model. Such ML-driven suggestions can direct targeted570

research efforts aimed at an improved understanding individual model processes, including new observational campaigns and

detailed analyses of individual model components.

The bias driver analyses also point to additional observational constraints necessary for improving chemical reanalysis. Our

previous studies have demonstrated that optimization of precursor emissions and assimilation of ozone and other species in the

upper troposphere and lower stratosphere has facilitated improvements in the ozone analysis for the entire troposphere, includ-575

ing near surface levels (Miyazaki et al., 2019). Nevertheless, the remaining bias highlights need to add observational constrains.

Drivers such as CH2O, identified as critical in various regions by ML, investigate the potential benefits of assimilating CH2O

column measurements from instruments like OMI and TROPOMI to reduce reanalysis ozone bias. Similarly, the application

of advanced tropospheric ozone retrievals with enhanced sensitivity to the lower troposphere (Fu et al., 2018; Okamoto et al.,

2023) could facilitate the improvement of the analysis of lower tropospheric ozone. Additionally, comprehensive outputs from580

DA, such as analysis ensemble spread, a measure of DA uncertainty, and analysis increment, a measure of adjustments by DA,

can provide unique insights into the necessity for additional observational constraints. Integrating these DA statistics as inputs

into ML frameworks could offer a potential avenue for more effectively identifying and addressing further improvements.

25

https://doi.org/10.5194/egusphere-2024-3753
Preprint. Discussion started: 7 January 2025
c© Author(s) 2025. CC BY 4.0 License.



Sub-grid scale processes, such as urban-scale chemistry and planetary boundary layer (PBL) mixing (Ko et al., 2022), are

likely significant contributors to model biases due to the coarse spatial resolution of the current reanalysis. Incorporating585

parameters related to sub-grid processes, such as vertical mixing rates, into the ML inputs could provide insight into their

role as drivers of ozone bias. Moreover, preliminary ML tests confirmed that adding high-resolution satellite data, such as

MODIS fire burnt areas and land use information, has the potential to improve the prediction of ozone bias, particularly during

periods of extreme pollution (figure not shown). Further investigation is required to comprehend how the incorporation of

high-resolution inputs enhance the ML performance and provides actionable insights for model improvement. Furthermore,590

the use of high-resolution models is crucial for reducing ozone biases (Skipper et al., 2024; Sekiya et al., 2021). ML-based

down-scaling approaches could also be used to generate high-resolution fields from the coarse reanalysis outputs, offering a

practical solution for applications such as health impact assessments.

6 Conclusions

Providing accurate global estimates of air pollution is crucial for evaluating the public health burden of diseases associated595

with air pollution exposure. This, in turn, informs effective environmental policy-making. However, current knowledge of

air pollution is hindered by substantial biases in model predictions and limitations in the observational coverage of existing

monitoring networks. While chemical reanalysis has significantly advanced our ability to reproduce regional and global ozone

patterns, it remains fundamentally constrained by the model performance and the sparse spatial coverage of observations.

We utilized an explainable ML framework, based on a regression-tree randomized ensemble approach and TOAR observa-600

tions, to analyze regional dependencies of ozone bias in the MOMO-Chem chemical reanalysis products. The results demon-

strate that the developed ML framework effectively predicts ozone bias magnitude and spatial-temporal variations across di-

verse geographical regions, such as North America, Europe, and East Asia. Furthermore, it extends bias predictions to regions

lacking surface observational networks, thereby providing a comprehensive global perspective on chemical reanalysis bias. By

extracting and synthesizing local and global measures of how input parameters affect predicted bias, the ML framework facili-605

tated model explanation and quantification of driver impacts. This approach yielded unique insights into the factors controlling

biases in air quality assessments.

The analysis of ozone bias drivers revealed distinct spatial and temporal patterns, which highlighted the intricate interplay of

meteorological conditions, chemical processes, and emissions. Surface pressure, temperature, and key chemical species such as

CH2O, PAN, HNO3, and CO were identified as significant contributors, with their impacts varying across regions and seasons.610

CH2O was identified as a dominant factor in North America and East Asia, particularly during the summer months. This reflects

its role in VOC-limited ozone regimes, which are driven by both anthropogenic and biogenic sources. In regions with complex

topography, such as the Andes and the western United States, Surface pressure played a critical role, with its contribution

varying seasonally. This indicates interactions with synoptic weather patterns and local dynamics. Notably, combustion-related

emissions showed substantial contributions, particularly from CO and C2H6. The influence of CO emissions strongly on ozone615

bias was particularly evident in regions characterized by high industrial activity, such as eastern China, as well as in biomass
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burning hotspots, including central Africa and Southeast Asia. Wildfires amplified ozone bias through CO, CH2O, PAN, and

VOCs, with notable impacts occurring over central Africa, South America, and Southeast Asia. Biogenic emissions, such as

C5H8 also contributed significantly, particularly over forested regions like the Amazon, central Africa, and Southeast Asia.

Additionally, radiation emerged as an important driver at low latitudes, reflecting its influence on photochemical reactions and620

atmospheric dynamics.

These findings highlight the diverse and region-specific contributions of meteorological conditions, combustion, wildfire,

and biogenic sources to ozone bias. By pinpointing key contributors and their variability, this study provides a roadmap for

targeted improvements in chemical transport models, DA systems, and emissions inventories, thereby facilitating a more precise

representation of ozone patterns in chemical reanalysis. Such advancements are of critical importance for enhancing global air625

quality predictions and supporting informed pollution management policies. Conventional methods, such as sensitivity analyses

using CTMs, require considerable computational resources to evaluate the contributions of each factor. In contrast, explainable

ML offers a consistent and comprehensive alternative, capable of assessing the relative importance of diverse parameters across

spatial and temporal dimensions. This adaptability allows the ML framework to be applied to other Earth system reanalyses

and modeling, which can impact various areas of Earth Science. However, the complexity of interactions among various630

meteorological, chemical, and anthropogenic factors presents challenges in their interpretation and require rigorous validation

of identified drivers against established scientific knowledge. By addressing these challenges, explainable ML will not only

enhance our understanding of ozone bias, but also pave the way for actionable insights and lead to an improved framework for

more effectively mitigating air pollution and its impacts.
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