The University of Tennessee Hazard Assessment and Controls Form | Laboratory Building and Room #: | |--------------------------------------| | | | Department/College: | | | | Completed by (print name and title): | | Principle Investigator (print name): | | Department Head (print name): | ## Instructions: Review the <u>Hazard Description</u> (column 3) of each <u>Exposure Condition</u> (column 2) and check the ones that are present (column 1). For every condition present, review the <u>Examples of Engineering Controls and Personal Protective Equipment</u> (column 4) and then complete the <u>Specific Engineering Controls and PPE</u> (column 5) that you intend to use to reduce or eliminate the hazard. Use the information to write a standard operating procedure for each process that involves a hazardous process or chemical. | Check if
Present | Exposure
Condition | Hazard Description | Examples of Controls and
Countermeasures | Specific Engineering Controls and Personal Protective Equipment (PPE) | Training Required (If PPE is indicated as a control measure, PPE training certifications are required) | |---------------------|---|--|--|---|--| | Chemical | Hazards | | | | | | | Chemicals, low
hazard with low
splash probability | Skin and eye irritation | Safety glasses, chemical resistant gloves, lab coat, closed shoe of good structure, long pants; Be aware of the nearest eyewash and shower | | Hazard
Communication
General Lab Safety | | | Compressed gases | Asphyxiation,
accidental tip over,
content release,and
pinch points | Gas cylinders must be secured to stationary objects in a safe location away from danger or impact; Safety glasses and gloves | | Hazard
Communication
General Lab Safety | | | Corrosive liquids w/reasonable probability of splash | Skin and eye damage | Chemical splash goggles and face shield, neoprene gloves, lab coat, closed shoes, chemical resistant apron; Be aware of the nearest eyewash and shower | | Hazard
Communication
General Lab Safety | | | Cryogenic liquids,
ultra-cold
freezers, dry ice | Aphyxiation, skin, eye and tissue damage, frostbite | Ventilation, safety glasses,
goggles and face shields for
splash hazards, insulated
gloves, closed shoes | | Hazard
Communication
General Lab Safety | | | Organic solvents | Skin/eye damage,
absorption through
skin, organ damage | Chemical splash goggles and face shield, heavy resistant gloves, lab coat, long pants, closed shoes, chemical resistant apron, eyewash and shower | | Hazard
Communication
General Lab Safety | July 2015 Page 1 | Check if
Present | Exposure
Condition | Hazard Description | Examples of Controls and
Countermeasures | Specific Engineering Controls and Personal Protective Equipment (PPE) | Training Required (If PPE is indicated as a control measure, PPE training certifications are required) | |---------------------|---|--|--|---|--| | | Volatile
hazardous or
highly hazardous
chemicals | Inhalation of toxic vapors, skin contact | Fume hood, glove box, safety glasses, lab coat, long pants, closed shoes, and gloves, respiratory protection | | Hazard Communication General Lab Safety Respiratory Protection | | | Pyrophorics | Spontaneously ignite in air at temperatures near 130°F (54°C). Extremely reactive to oxygen and moisture | Emergency eyewash station, an emergency shower, and a class C fire extinguisher; inert atmosphere glove box | | Hazard
Communication
General Lab Safety | | | Chemical
Hazardous
Wastes | Exposure, environmental release | Safety glasses, gloves, lab coats, proper storage and disposal procedures; Training and safe handling procedures | | Hazard
Communication
Hazardous Waste | | | Special cleaning agents | Exposure, allergies | Material Safety Data Sheets,
hazard communication training,
proper procedures, gloves,
safety glasses/goggles | | Hazard
Communication
General Lab Safety | | | Particularly
Hazardous
Substances | Poisons, neurotoxins, teratogens, mutagens, carcinogens | Procedures, gloves, safety
glasses, lab coats, storage, and
disposal | | Hazard
Communication
General Lab Safety
Lab Standard | | | Washing
glassware | Skin lacerations from broken glass, acid or base exposure | Chemical Splash Goggles, Face Shields, rubber gloves, lab coat. | | Hazard
Communication
General Lab Safety | | Physical I | Hazards | | | | | | | Pressure Release | Injury from sudden release of energy from valves, compression chambers | Energy control, safety glasses, shields, body position | | High Pressure Safety
Training
(recommended) | | | Confined Spaces | Exposure, falls,
dangerous
atmospheres,
asphyxiation, noise,
vibration | Buddy system, lanyards, ventilation, monitoring | | Confined Space | | | Elevated heights | Fall injury | Lanyards, anchors | | Fall Protection | | | Energized
Equipment | Pinch, crush, caught,
pulled in,
electrocution | Energy control, signage, guards, no jewelry, tie back long hair | | Lock Out Tag Out | | | Extreme
Environmental
Conditions | Hypothermia (cold),
frostbite (cold), heat
exhaustion (heat) or
heat stroke. | Training, physiological monitoring. Rest cycles and fluid replacement | | General Lab Safety | | | Impact | Injury to head or body | Hard hat, impact resistant toed shoes, body position | | | | | Manipulation of large objects | Injury, death | Proper lifting equipment, procedures, inspections, buddy system | | Ergonomics
(recommended) | July 2015 Page 2 | Check if
Present | Exposure
Condition | Hazard Description | Examples of Controls and
Countermeasures | Specific Engineering Controls and Personal Protective Equipment (PPE) | Training Required (If PPE is indicated as a control measure, PPE training certifications are required) | |---------------------|------------------------|--|---|---|--| | | Material Handling | Physical injury, strains, sprains | Buddy system, gloves, standard operating procedures | | Ergonomics
(recommended) | | | Noise | Deafness, hearing damage, inability to communicate | Noise monitoring and engineering controls (e.g., enclosures, baffles, mufflers), ear plugs, ear muffs, etc. | | Hearing Conservation | | | Penetration | Injection, wounds | Signage, body position, proper technique, gloves | | General Lab Safety | | | Respirable Dust | Lung damage | Local exhaust ventilation.
monitoring, proper technique,
respirator | | General Lab Safety
Respiratory Protection | | | Vibrating
Equipment | Cumulative trauma disorders. | Gloves, protective shoes, hearing protection | | Ergonomics (recommended) | | Additi | ional Comments: | | | | | | Contification I contify this bound accomment was conducted according | on to University Delicy and the signature | aa bala | |--|---|------------| | Certification: I certify this hazard assessment was conducted according indicate acknowledgement. | ng to University Policy and the signat | ures delow | | Completed by (print): | Date: | | | Completed by(signature): | | | | Principle Investigator (print): | Date: | | | Principle Investigator (signature): | | | July 2015 Page 3