Niven's constant

This is an old revision of this page, as edited by Citation bot (talk | contribs) at 22:41, 4 November 2021 (Misc citation tidying. | Use this bot. Report bugs. | Suggested by Neko-chan | Category:Mathematical constants | #UCB_Category 13/89). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In number theory, Niven's constant, named after Ivan Niven, is the largest exponent appearing in the prime factorization of any natural number n "on average". More precisely, if we define H(1) = 1 and H(n) = the largest exponent appearing in the unique prime factorization of a natural number n > 1, then Niven's constant is given by

where ζ is the Riemann zeta function.[1]

In the same paper Niven also proved that

where h(1) = 1, h(n) = the smallest exponent appearing in the unique prime factorization of each natural number n > 1, o is little o notation, and the constant c is given by

and consequently that

References

  1. ^ Niven, Ivan M. (August 1969). "Averages of Exponents in Factoring Integers". Proceedings of the American Mathematical Society. 22 (2): 356–360. doi:10.2307/2037055. JSTOR 2037055.

Further reading

  • Steven R. Finch, Mathematical Constants (Encyclopedia of Mathematics and its Applications), Cambridge University Press, 2003


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy