Jump to content

9-orthoplex: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
cd
No edit summary
Line 10: Line 10:
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| {3<sup>7</sup>,4}<BR>{3<sup>6,1,1</sup>}
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| {3<sup>7</sup>,4}<BR>{3<sup>6,1,1</sup>}
|-
|-
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]s||{{CDD|node_1|3|node|3|node||3|node|3|node|3|node|3|node|4|node}}<BR>{{CDD|nodea_1|3a|nodea|3a|nodea||3a|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea}}<BR>{{CDD|node_h|4|node|3|node|3|node||3|node|3|node|3|node|3|node|3|node}}<BR>{{CDD|node_h|2|node_h|2|node_h|2|node_h|2|node_h|2|node_h|2|node_h|2|node_h|2|node_h}}
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]s||{{CDD|node_1|3|node|3|node|3|node||3|node|3|node|3|node|3|node|4|node}}<BR>{{CDD|nodea_1|3a|nodea|3a|nodea||3a|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea}}<BR>{{CDD|node_h|4|node|3|node|3|node||3|node|3|node|3|node|3|node|3|node}}<BR>{{CDD|node_h|2|node_h|2|node_h|2|node_h|2|node_h|2|node_h|2|node_h|2|node_h|2|node_h}}
|-
|-
|bgcolor=#e7dcc3|8-faces||512 [[8-simplex|{3<sup>7</sup>}]][[Image:8-simplex_t0.svg|25px]]
|bgcolor=#e7dcc3|8-faces||512 [[8-simplex|{3<sup>7</sup>}]][[Image:8-simplex_t0.svg|25px]]

Revision as of 04:00, 30 January 2011

Regular Enneacross
(9-orthoplex)

Orthogonal projection
inside Petrie polygon
Type Regular 9-polytope
Family orthoplex
Schläfli symbol {37,4}
{36,1,1}
Coxeter-Dynkin diagrams


8-faces 512 {37}
7-faces 2304 {36}
6-faces 4608 {35}
5-faces 5376 {34}
4-faces 4032 {33}
Cells 2016 {3,3}
Faces 672 {3}
Edges 144
Vertices 18
Vertex figure Octacross
Petrie polygon Octadecagon
Coxeter groups C9, [37,4]
D9, [36,1,1]
Dual Enneract
Properties convex

In geometry, a 9-orthoplex or 9-cross polytope, is a regular 9-polytope with 18 vertices, 144 edges, 672 triangle faces, 2016 tetrahedron cells, 4032 5-cells 4-faces, 5376 5-simplex 5-faces, 4608 6-simplex 6-faces, 2304 7-simplex 7-faces, and 512 8-simplex 8-faces.

It has two constructed forms, the first being regular with Schläfli symbol {37,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {36,1,1} or Coxeter symbol 611.

Alternate names

  • Enneacross, derived from combining the family name cross polytope with ennea for nine (dimensions) in Greek
  • Pentacosidodecayotton as a 512-facetted 9-polytope (polyyotton)

It is one of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 9-hypercube or enneract.

Construction

There are two Coxeter groups associated with the enneacross, one regular, dual of the enneract with the C9 or [4,37] symmetry group, and a lower symmetry with two copies of 8-simplex facets, alternating, with the D9 or [36,1,1] symmetry group.

Cartesian coordinates

Cartesian coordinates for the vertices of an enneacross, centered at the origin are

(±1,0,0,0,0,0,0,0,0), (0,±1,0,0,0,0,0,0,0), (0,0,±1,0,0,0,0,0,0), (0,0,0,±1,0,0,0,0,0), (0,0,0,0,±1,0,0,0,0), (0,0,0,0,0,±1,0,0,0), (0,0,0,0,0,0,±1,0,0), (0,0,0,0,0,0,0,±1,0), (0,0,0,0,0,0,0,0,±1)

Every vertex pair is connected by an edge, except opposites.

  • Olshevsky, George. "Cross polytope". Glossary for Hyperspace. Archived from the original on 4 February 2007.
  • Polytopes of Various Dimensions
  • Multi-dimensional Glossary
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy