Jump to content

Perron number

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, a Perron number is an algebraic integer α which is real and greater than 1, but such that its conjugate elements are all less than α in absolute value. For example, the larger of the two roots of the irreducible polynomial is a Perron number.

Perron numbers are named after Oskar Perron; the Perron–Frobenius theorem asserts that, for a real square matrix with positive algebraic entries whose largest eigenvalue is greater than one, this eigenvalue is a Perron number. As a closely related case, the Perron number of a graph is defined to be the spectral radius of its adjacency matrix.

Any Pisot number or Salem number is a Perron number, as is the Mahler measure of a monic integer polynomial.

References

  • Borwein, Peter (2007). Computational Excursions in Analysis and Number Theory. Springer Verlag. p. 24. ISBN 0-387-95444-9.


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy