Jump to content

Cramér's theorem (large deviations)

From Wikipedia, the free encyclopedia

Cramér's theorem is a fundamental result in the theory of large deviations, a subdiscipline of probability theory. It determines the rate function of a series of iid random variables. A weak version of this result was first shown by Harald Cramér in 1938.

Statement

[edit]

The logarithmic moment generating function (which is the cumulant-generating function) of a random variable is defined as:

Let be a sequence of iid real random variables with finite logarithmic moment generating function, i.e. for all .

Then the Legendre transform of :

satisfies,

for all

In the terminology of the theory of large deviations the result can be reformulated as follows:

If is a series of iid random variables, then the distributions satisfy a large deviation principle with rate function .

References

[edit]
  • Klenke, Achim (2008). Probability Theory. Berlin: Springer. pp. 508. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6.
  • "Cramér theorem", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy