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Our growing understanding of the causes and consequences of ocean acidification in local marine waters 
has been reported in the peer-reviewed scientific literature and summarized in the Scientific Summary of 
the Washington State Blue Ribbon Panel on Ocean Acidification (hereafter, Scientific Summary) released in 
2012. The purpose of this short communication is to clearly and succinctly present the current scientific 
understanding of ocean acidification in the Pacific Northwest based on evidence from the peer-reviewed 
scientific literature.

The scientific evidence for ocean acidification in the Pacific Northwest is compelling. This evidence 
consists of numerous scientific papers, published over a period of many years, representing contributions 
from multiple scientists at multiple institutions. The scientific evidence comes from investigations of the 
natural and anthropogenic2, biogeochemistry Pacific Northwest waters, organismal sensitivity to relevant 
biogeochemical conditions, physiological mechanisms that determine sensitivity, and successful adaptation 
of culture practices in hatcheries.

Six things we know about ocean acidification in Pacific Northwest coastal 
waters:
1.  Rising atmospheric CO2 changes ocean chemistry and negatively impacts shelled 
organisms.
The concentration of CO2 in the atmosphere has increased due to human activities, primarily combustion of 
fossil fuels and deforestation3. The addition of carbon dioxide to seawater increases the concentration of 
hydrogen ions (H+), reducing both the pH and the dissolved carbonate ion concentration.  This is the 
phenomenon known as ocean acidification (OA) 4. Even though seawater remains a basic solution, it 
becomes acidified by the addition of CO25 It is well established that Pacific Northwest marine waters, like 
the global oceans, undergo the highly predictable chemical reactions that reduce both the pH and the 
concentration of carbonate ions6.

The concentration of carbonate ions is important because these ions, along with dissolved calcium, are the 
building blocks of shells and skeletons of many marine organisms. Both aragonite and calcite are common 
biominerals of calcium carbonate produced by shellfish and other calcifying marine organisms. Aragonite is 
produced by the larvae of many Pacific Northwest shellfish (e.g., clams, mussels, oysters) and is the form 
more sensitive to increasing CO2.

The stability of minerals such as calcium carbonate is defined by a term called the saturation state7 or 
omega (Ω). Because calcium is abundant, the saturation state of calcium carbonate minerals is mainly 
controlled by the carbonate ions in seawater. When the carbonate ion concentration is high, Ωaragonite is high 
and mineral formation is favored (Ωaragonite > 1); when the carbonate ion concentration is low, Ω is low and 
mineral formation is not favored (Ωaragonite < 1).  When the Ωaragonite is below the value of 1.0, the water is 
termed “corrosive” because dissolution of pure aragonite and unprotected aragonite shells will begin to 
occur8.

The global increase in atmospheric CO2 from human activity is large enough to reduce seawater Ωaragonite by 
biologically significant amounts9. The global increase in atmospheric CO2 since the pre-industrial era has 
caused a decline in the pH of surface seawater by about 0.110. Simultaneously, the calcium carbonate 
saturation state has decreased by 20%11. Research over the past two decades has underscored the 
importance of calcium carbonate saturation state to understanding the effects of ocean acidification on 
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calcifying organisms12. For many shell-forming organisms it is the aragonite saturation state, not pH, that 
has been shown to be most critical to survival and growth13.

Declining calcium carbonate saturation state makes it more difficult for calcifying organisms (oysters, 
clams, mussels, crabs, corals, etc.) to produce or maintain their calcium carbonate shells or skeletons14.

2.  Pacific Northwest shellfish are sensitive to reduced calcium carbonate-
saturation state within the current range of conditions.
Shellfish in Pacific Northwest marine waters are particularly vulnerable to ocean acidification-driven 
effects.  Pacific Northwest waters are colder and fresher than the global average ocean15, which means CO2 
gas dissolves more effectively in these waters. Consequently, the pre-industrial Ωaragonite was already lower 
here than in the average ocean, with a pre-industrial of ~2.5, compared to the open ocean average value of 
~3.616.

Starting from pre-industrial values of Ωaragonite ~2.5 in Pacific Northwest waters, modern-day surface waters 
in contact with increased atmospheric CO2 have experienced a decrease in the aragonite saturation state of 
about 0.5 units.  Because water from upwelling was last in contact with the surface ~30-50 years ago, the 
anthropogenic signal is weaker in those source waters. Mixtures of these two sources, however, results in a 
reduction in Ωaragonite due to anthropogenic CO2 off the Pacific Northwest outer coast of ~0.25-0.517.

Even weakly supersaturated conditions can be harmful: significant losses in oyster production have been 
observed at aragonite saturation states below 2.018. This is due to negative effects on the energy budget of 
developing larvae that must produce shell at a rate several-thousand times higher than the chemical rates of 
aragonite formation19.

The decrease in calcium carbonate saturation state from ocean acidification is important to Pacific 
Northwest shellfish living in saturation conditions that are naturally close to harmful thresholds.

3.  Natural and anthropogenic contributions are additive.
As reported in the Scientific Summary20, “Washington State is particularly vulnerable to pH decline 
because regional drivers can combine with the global atmospheric CO2 contribution to exacerbate the 
acidification process.” Several factors, both natural and anthropogenic, drive low-Ωaragonite events in the 
Pacific Northwest. As addressed in the Scientific Summary and the many scientific papers referenced 
therein, the primary drivers of low Ωaragonite in Washington’s marine waters are global atmospheric CO2, 
upwelling21, respiration/hypoxia22, watershed inputs23, and non-CO2 acidic gases. The effects of these 
multiple drivers are additive.

The current contribution of atmospheric CO2 from human activity in local waters increases the likelihood 
that conditions for shell formation will be unfavorable. Because this contribution reduces Ωaragonite on the 
order of 0.25-0.5 units, it can and sometimes does cause thresholds harmful to calcifying organisms to be 
crossed. A recent paper24, describes how conditions in the coastal ocean have affected saturation state in 
Netarts Bay, Oregon. This paper established a direct correlation between saturation state and larval 
production in a shellfish hatchery there, finding that net larval growth became negative below Ω = 1.7.  
Other observations have shown that corrosive waters with Ωaragonite < 1 now reach the surface near shore, 
and found that the contribution from anthropogenic CO2 was necessary to cross this threshold25.

Freshwater input and human-derived factors causing low Ωaragonite are minimal in Netarts Bay, but in other 
Pacific Northwest bays and estuaries, freshwater, nutrients and organic material can also contribute to 
reductions in Ωaragonite26. This is because the Ωaragonite of some rivers is low and, in areas with high human 
and natural loads of carbon and nitrogen, CO2 derived from respiration can be substantial27. Although the 
details vary between locations27, it remains the case that the anthropogenic CO2 effect is always to further 
reduce Ωaragonite below conditions resulting from natural variability alone.



Anthropogenic additions of CO2 significantly contribute to conditions that cause Ωaragonite in surface waters 
to reach levels that are detrimental (e.g. Ωaragonite < 1.7) or even corrosive (Ωaragonite < 1.0), creating 
conditions that are unfavorable or harmful for some local organisms.

4.  Anthropogenic contributions to ocean acidification are detectable and 
have increased the frequency, intensity, and duration of harmful 
conditions. 
The relative magnitude of anthropogenic and non-anthropogenic contributions to rising CO2 in waters of 
the Pacific Northwest can be determined and have been reported in the scientific literature29. These studies 
reported that, of the total increase in CO2 from the pre-industrial in subsurface waters of Hood Canal, 
24-49% was attributable to anthropogenic CO230, and that an average decline in aragonite saturation state 
ranges from 0.231 to 0.531 units in shelf waters of the Pacific Northwest. While anthropogenic CO2 is the 
largest single source of acidifying pollution to the Pacific Northwest waters32, it does not currently 
dominate local variability at daily to seasonal timescales. However, it does add an amount of CO2 that can 
significantly worsen already-low Ωaragonite conditions for shelled organisms. This contribution essentially 
‘makes a bad day worse.’

For the continental shelf of Oregon, “Pre-industrial Ωaragonite was rarely undersaturated whereas 
contemporary surface values occasionally drop as low as 0.66. At the shelf break, contemporary Ωaragonite is 
undersaturated ~30% of the time, whereas pre-industrial undersaturation occurred only ~10% of the time. 
These changes in Ωaragonite from pre-industrial levels are consistent with the findings of the modeled 
simulations of Hauri et al. (2013), which also concluded that contemporary Ωaragonite observations in the 
California Current System have already shifted substantially from the pre-industrial range.” 34 This effect is 
projected to grow with time, at current CO2 emission rates35.

As the total amount of CO2 in the atmosphere and ocean grows, the frequency, intensity, and duration of 
adverse conditions increases36. Thus, despite well-known natural variability in pH and aragonite saturation 
state, marine organisms now are exposed to adverse conditions more often than in the past, and these 
conditions are likely to be more extreme, causing more harm37. Vulnerable organisms such as pteropods 
and vulnerable life stages such as oyster larvae can suffer mortality or abnormal development following 
even brief exposures to harmful conditions38, and the negative biological consequences of even brief 
exposure can persist even after environmental conditions improve39.

Significant effects of rising anthropogenic atmospheric CO2 are detectable in Pacific Northwest waters 
now, and these effects will continue to grow as CO2 continues to increase.

5. Small changes in the environment can cause large responses among 
living organisms.
While most marine organisms can tolerate a range of environmental conditions, at some point their 
tolerance fails. For example, fish die when dissolved oxygen reaches critically low levels, and intertidal 
organisms can die on hot sunny days when temperatures reach critically high levels. Thus, even small 
changes in the environment can cause an abrupt biological response when the limits of tolerance are 
approached or passed. This general rule holds for exposure to low pH and Ωaragonite. For example, the shells 
of free-swimming pteropods begin to dissolve when the aragonite saturation state is ~1.040.  For Pacific 
oysters growing in the Pacific Northwest, the negative impacts begin when Ωaragonite drops below 2.0, with 
net larval growth occurring only when Ωaragonite > 1.741. With respect to low pH and aragonite saturation 
state, the events that drive the observed negative biological effects42 are happening now in waters of the 
Pacific Northwest and are significantly exacerbated by anthropogenic CO2.  These events will become more 
frequent and increasingly harmful to shell-forming organisms as levels of CO2 in the environment grow.



Small changes in the environment can cause an abrupt biological response when the limits of tolerance are 
approached or passed.

6. Local species are affected.
Pacific oysters in aquaculture facilities in Washington and Oregon have shown clear negative responses to 
low Ωaragonite 43. Significantly, these negative responses are ameliorated when CO2 concentrations in 
hatchery water are artificially reduced. Pacific oysters are not native to the Pacific Northwest, but they have 
been grown in aquaculture and in the natural environment here for a century and are naturalized in 
Washington waters. Studies of the Olympia oyster, which is native to Washington, that were performed in 
northern California (where the species also is native) showed that survival and growth of larvae and 
juveniles decreased with exposure to low pH and Ωaragonite in both the laboratory and field44. Other species 
native to the Pacific Northwest—for example, red urchins, northern abalone, turban snails—in laboratory 
settings have shown negative responses when exposed to levels of low pH and high CO2 that are known to 
occur in local waters45. The larval stages of calcifying invertebrates appear to be highly sensitive to low pH 
and pCO2, but negative effects have been observed in multiple life history phases, from gamete fertilization 
through adults46.  Moreover, research indicates that combining two or more stressors—for example, high 
temperature and low pH or Ωaragonite—can cause more harm than either stressor alone47. Consequently, 
when considering the effects of increasing CO2 on local marine life, we need also consider other stresses 
imposed on those organisms to make accurate predictions of potential harm.

The larval stages of calcifying invertebrates appear to be highly sensitive to low aragonite saturation state.
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