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Abstract. In recent development of secure multi-party computation (MPC), pseudorandom
correlations of subfield vector oblivious linear evaluation (sVOLE) type become popular due
to their amazing applicability in multi-dimensional MPC protocols such as privacy-preserving
biometric identification and privacy-preserving machine learning protocols. In this paper, we
introduce a novel way of sVOLE distribution in three-party and four-party honest majority
settings with the aid of a trusted server. This new method significantly decreases the commu-
nication cost and the memory storage of random sVOLE instances. On the other hand, it also
enables a streamline distribution process that can generate a sVOLE instance of an arbitrary
length, which results in 100 percent of utility rate of random sVOLE in multi-dimensional
MPC protocols while preserving complete precomputability.
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1 Introduction

1.1 Motivation

Secure multiparty computation (MPC) is one of the central subfields in cryptography. MPC aims
to accomplish a joint evaluation of a function over inputs provided by multiple parties without
revealing any extra information. Due to its feature on protection of the inputs, it has been widely
used in analysis and processing of private or sensitive data held by multiple parties.

Meanwhile, apart from the classical correlation generation protocols such as oblivious transfer
(OT) and Beaver triples, researchers have also attempted to find new kinds of correlations (for
example [1]) that can fulfill different needs of MPC protocols and perform more efficiently compared
to classical ways [2–5]. Among these variants, subfield vetor oblivious linear evaluation (sVOLE),
as an efficient way to provide correlated random vector sharings for two parties, has been widely
used as a convenient auxiliary tool to accomplish circuit-based MPC involving multi-dimensional
inputs.

In [6], the authors explicitly described the connection between sVOLE and multi-dimensional
secure two-party computation through the notion of tensor triple. The tensor triple technique
introduced in the article not only enables the secure computation of matrix multipliction through
a direct processing of vectors instead of breaking the computation entrywise, but preserving the
essential property of the precomputability of multiplicative triples, namely the participants do not
need any prior knowledge of the dimensions of the matrices involved in further protocols to generate
tensor triples.
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As multi-dimensional MPC is widely and heavily used not only in privacy-preserving biometric
authentication and identification, but also various privacy-preserving machine learning protocols, it
is natural to expect an efficient way to fulfill secure multi-dimensional computation in 3PC or even
generic MPC cases, as the number of data providers in machine learning is not necessarily restricted
to two. Furthermore, although there exists multiple transformation methods from a generic 2PC
simple bilinear correlation to its MPC generalization (for instance [7]), the efficiency is often com-
promised and the transformation usually does not provide any optimization. Therefore, to fulfill
the need of efficient privacy-preserving machine learning protocols, it is required an optimized and
well-designed tensor triple generation process has to be established.

Server-aided secure multi-party computation was first introduced by Beaver in [8]. The existence
of a trusted server as explained can help reduce the communication and computation costs of the
MPC protocols considerably. There also have been researches (for instance [9, 10]) which fulfilled
the usual Beaver correlation and generic correlation distributions with the aid of a trusted server
and achieved an apparent better performance in efficiency. Hence an exploration of a specialized
server-aided distribution of the sVOLE and tensor triple correlation is desirable. It is expected the
participation of a trusted server can significantly reduce the communication, computation, and even
memory storage costs of the distribution protocol.

1.2 Our contribution

The goal of this paper is to explore a more efficient way to fulfill multi-dimensional secure multi-
party computation in the case where the number of participants is larger than two. In this paper,
we generalize canonically the notion of tensor triples to N parties. We also invented a streamlined
server-aided tensor triple generation protocol in the honest majority setting, in which the server can
continuously provide tensor triples to all parties in an amazingly fast speed and the storage space of
triples for each participant is also largely optimized to obtain a linear overhead, through a novel way
by breaking the rank 1 matrix in the third entry of a tensor triple into low rank matrices instead
of full rank ones. Furthermore, in such a distribution protocol, the utility rate of the triples can
achieve up to 100%. Hence our server-aided tensor triple distribution protocol provides an optimal
utilization efficiency while achieving the full precomputability.

1.3 Related works

A generic way to transform a 2PC sVOLE protocol to a generic MPC sVOLE protocol has been
introduced in [7]. Although not defined identically, the following works [11, 12] also provide a gen-
eration of sVOLE protocol in a generic MPC situation and give a corresponding design for imple-
mentation. It should be mentioned that the original definition of VOLE does not generalize in a
canonical way. We will explain the difference in these generalization in detail in further sections,
but it should be emphasized our work proposed a novel and very efficient way for tensor triple
generation and distribution, and its advantages will also be explained in detail.

The idea of distributing multiplicative triples with the aid from a trusted server (or equivalently
referred to as Triple-as-a-Service) has been explored by many researchers (See [9, 10]), whilst the
main goal of such a protocol is to transfer offline burdens to the server. In our research, however, this
is not the only reason of importing the server. The server also enables a streamline distribution of
tensor triples and the communication cost can be shrinked with a specialized design in the server-
aided case. Therefore, the existence of the server grants significant benefits for the tensor triple
distribution and may well be an optimized way to generate them.
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1.4 Arrangement of paper

In Chapter 2, we introduce define necessary notions and primitives in MPC. In Chapter 3, we recall
the notion of tensor triple in two-party case and briefly explain the generalization and provide a
brief comparison with different definitions in literature. In Chapter 4, we explicitly describe the
server-aided tensor triple distribution protocols in both 3PC and 4PC cases in detail, and discuss
their corresponding theoretical efficiency and security. In Chapter 5 we present implementations of
protocols as well as results of the experiments after the execution are presented.

1.5 Security model

We consider the security in the universal composability (UC) model. All protocols involved in the
rest of the paper are secure against semi-honest and computationally bounded adversaries. We
further impose the honest majority assumption, namely the adversary cannot collude with more
than or equal to half of the participants. In the case where a server is present, the server is assumed
to be a trusted one.

2 Preliminaries and notations

2.1 Oblivious transfer (OT)

We provide a very brief introduction of oblivious transfer together with its multiple invariants in
order to import all possible notations to be used. In an oblivious trnasfer [13], the sender with a
pair of messages (m0,m1) interacts with the receiver with a choice bit b. The result ensures that the
receiver learns mb but obtains no knowledge of m1−b, while the sender obtains no knowledge of b.
In an OT extension protocol OTn

l , the input of the sender is n message pairs (mi,0,mi,1) ∈ {0, 1}2l
and the input of the receiver is a string b ∈ {0, 1}n. The result allows the receiver to learn mi,b[i] for
1 ≤ i ≤ n. In a Random OT (ROT), the sender inputs nothing beforehand but obtains two random
strings in the outputs as the message pair, and the receiver inputs nothing either but obtains the
choice bit together with the selected message afterwards. Similiarly, a batched version of ROT (or
also known as OT extension, see [14–16]) which generates n message pairs of bit-length l is denoted
by ROTn

l . A correlated OT (COT) [5, 17, 18] is a variant of ROT that allows the sender to pre-
determine a string ∆ and obtain two correlated random strings as the message pair with their XOR
equal ∆. The extension of COT denoted by COTn

m allows the sender to choose ∆ ∈ F2m . The
protocol eventually provides two uniformly distributed vectors u ∈ Fn

2 ,v ∈ Fn
2m to the receiver, and

v⊕ (u ·∆) to the sender.

2.2 Subfield vector oblivious linear evaluation (sVOLE)

A subfield vector oblivious linear evaluation protocol is a generalization of COTn
m to an arbitrary

finite base field. A vector oblivious linear evaluation (VOLE) allows one party to obtain two vectors
u,v ∈ Fn

p , and the other party a scalar x ∈ Fp and the linear evaluation ux+ v.
In further chapters, we will be mainly using the random variants of COTn

m and sVOLE func-
tionalities defined in Fig. 1. It is not difficult to see that RCOTn

m is a special case of F p,m,n
RsVOLE when

p = 2.
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Functionality RCOTn
m

Players: The sender S and the receiver R.
Inputs: None.
Outputs:

– S outputs v ∈ Fn
2m ,∆ ∈ F2m ;

– R outputs u ∈ Fn
2 ,v⊕ (u ·∆) ∈ Fn

2m

Functionality F p,m,n
RsVOLE

Players: The sender S and the receiver R.
Inputs: A dimension pair (n,m).
Outputs:

– S outputs x ∈ Fpm ,v ∈ Fn
pm ;

– R outputs u ∈ Fn
p , xu + v ∈ Fn

pm .

Fig. 1. Functionalities of Random COT and Random sVOLE

VOLE protocols with semi-honest and computational security in OT-hybrid model have been
defined in [3, 5]. Subfield VOLE, as an important variant of VOLE, has also been studied and
implemented in various ways (See [4, 5, 18–21]).

3 Tensor triple

Tensor triple defined in [6] is an efficient way to offer multi-dimensional masks to vectors for secure
tensor computations and matrix products. This type of randomization is very useful in privacy-
preserving batched biometric idenfication and privacy-preserving machine learning protocols which
usually involves numerous matrix products of matrices with large dimensions.

3.1 Generic definition of tensor triple

We will basically follow the definition described in [6].

Definition 1 (Tensor triple). By definition, a tensor triple (u, v,W ) consists of data u ∈ Km, v ∈
Kn,W ∈Mm×n(K) satisfying u⊗ v = uvT = W .

Definition 2 (Tensor triple sharing). Let P1, ..., PN be the participants of a secure multi-party
computation protocol over an ambient finite field or ring K. By definition, a tensor triple sharing
scheme provides two vectors and one matrix

ui ∈ Km, vi ∈ Kn, Wi ∈Mm×n(K)

for the participant Pi, such that ui, vi form secret sharings of u ∈ Km, v ∈ Kn respectively, with the
relation u⊗v = uvT =

∑N
i=1 Wi. Shares of u, v and W will be denoted by [u], [v] and [W ] if indices

are not particulary involved. For our convenience, such a triple will be called an (m,n)-triple.

Tensor triple can be regarded as a generalization of the Beaver triple when m = n = 1. Therefore
we note if a distribution protocol of tensor triples is independent of the choice of the dimensions,
it can also fulfill the need of a distribution of the usual Beaver triples, and therefore serving as the
pre-compuation procedure for a generic GMW or BGW protocol.
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Secure Multi-Party Outer Product Out(a,b)
Input: Pi inputs shares [a]i, [b]i of two vectors a ∈ Km,b ∈ Kn.
Primitive: A tensor triple generation protocol TT.Gen(m,n, λ)
Pre-processing Phase: The participants perform a TT.Gen(m,n, λ) protocol. Pi outputs [u]i ∈
Km, [v]i ∈ Kn, [W ]i ∈Mm×n(K).
Initial Phase: Pi computes [s]i ← [a]i − [u]i and [t]i ← [b]i − [v]i.
Interacting Phase:

1. Pi annouces publicly to all parties [s]i and [t]i;
2. All parties recover s and t from the annoucement;
3. P1 secretly computes [a ⊗ b]1 ← s ⊗ t + [u]1 ⊗ t + s ⊗ [v]1 + [W ]1, and each other party Pi for

i ̸= 1 secretly computes [a⊗ b]i ← [u]i ⊗ t+ s⊗ [v]i + [W ]i.

Outputs: Pi outputs [a⊗ b]i.

Fig. 2. Tensor-triple-based secure outer product protocol

We also recall in Fig. 2 the secure generic multi-party outer product protocol introduced in [6].
This also induces a secure matrix product protocol when applying the outer product expansion
formula AB =

∑
ai ⊗ bi.

3.2 Comparison with other definitions in literature

In this section we would like to introduce other definitions of 3PC or MPC sVOLE. The general-
ization to three-party or generic multi-party cases can lead to several possible ways to fit the need
of different MPC protocols. In this section we apply the conventional terminology that K ⊂ F is a
fixed field extension of degree m.

Boyle et al. In [7], the generalization of two-party sVOLE is described in the notion of the so-
called Simple Bilinear Correlation. The functionality provides each of the participants P1, ..., PN

with (ui, xi,vi) ∈ Kn×F×Fn, where
∑

xi

∑
ui =

∑
vi. This type of generalization coincides with

our definition of tensor triples up to a canonical isomorphism of linear spaces ϕ : F→ Km.

Qiu, Yang, Yu and Zhou In [11], the functionality of multiparty sVOLE provides one main
participant P0 with (ui,wi) ∈ Kn × Fn for all i = 1, ..., N , and each of the participants P1, ..., PN

with (vi, ∆i) ∈ Fn × F, such that wi = vi +∆iui for all i = 1, ..., N . This functionality is utilized
to fulfill the need of an efficient maliciously secure multiparty PSI.

Zhang In [12], the functionality of the so-called pseudorandom MP-sVOLE generator is described
as such to provide P1 with (a0,a1) ∈ Fn × Kn, PN with (aN , x1, ..., xN−1) ∈ Fn × FN−1, and Pi

with ai ∈ Kn, such that
a0 = x1a1 + ...+ xN−1aN−1 + aN .

The functionality is used to generate a multiparty PSI protocol with a comparatively lower com-
munication cost.
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In this paper, our notion of tensor triple generates canonically to multiparty cases, and we
emphasize this generalization coincides with the notion of multiparty simple bilinear correlation
defined in [7] up to a canonical isomorphism of vector spaces.

4 Server-aided tensor triple generation

A third-party with computational power may be eligible to provide triples for multiple parties
in a much more efficient way. This idea has been explored by many people, such as [9, 10]. The
protocol described in all these papers can be used almost directly to generate tensor triples for
multiple parties (not necessarily only two). The flexibility of tensor triple allows the server to
provide triples of fixed dimensions while fulfilling the needs for all lower dimensional computations.
More specifically, the dimensions of the triples may be predetermined, as a generic (n, n)-triple
could be tailored to serve as a pair of triples of dimensions (s, t) for any s, t < n. This means the
parties need not know the precise dimensions in advance for the preprocessing procedure. A great
advantage is that a specialized server may serve as the triple generator for multiple sets of multiple
parties in order to speed up all preprocessing procedure. Furthermore, we will explain later that
our generation protocol can technically remove the restriction of an upper bound n.

4.1 Functionality

Functionality FK,m,n
3PCTT

The functionality interacts with three parties P1, P2, P3 and an adversary A who may corrupt with
exactly one of the three parties. K is a finite field and m,n parametrize the dimensions.

1. Upon receiving (init, sidi) from all three parties P1, P2, P3, sample uniformly random vectors

x1,x2,x3,a1,b1,b2,a3,b3 ←$ Km,

y1,y2,y3, c1,d1,d2, c3,d3 ←$ Kn,

such that b1 = b3, d1 = d3, b2−b1 = a1− a3 = x1 +x2 +x3, d2−d1 = c1− c3 = y1 +y2 +y3.
If Pi is corrupted, receive (xi,yi) from A and set b2 = b1 +x1 +x2 +x3, a3 = a1−x1−x2−x3,
d2 = d1 + y1 + y2 + y3 and c3 = c1 − y1 − y2 − y3.

2. Send:
(x1,y1,a1,b1, c1,d1) to P1,
(x2,y2,b2,d2) to P2 and
(x3,y3,a3,b3, c3,d3) to P3.

Fig. 3. Functionality of 3PC tensor triple distribution

Before we proceed introducing the distribution protocol, we first give the definition of the func-
tionality we attempt to fulfill in Fig. 3. The main difference of this new functionality from the
classical sVOLE functionality is a lower rank matrix in the third component. This enables an
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extremely faster communication in a high dimensional parameter setting and also allows us to
formulate a streamline distribution protocol which we will explain in detail in further sections.

We first define the functionality FK,m,n
3PCTT for 3PC tensor triple generation. As shown in the

output, the three participants may store the share of W separately in vectors without computing
out the full matrix and only expand them as W1 = −a1 ⊗ d1 − b1 ⊗ c1 − b1 ⊗ d1, W2 = b2 ⊗ d2

and W3 = a3 ⊗ d3 + b3 ⊗ c3 when it is necessary (for instance to compute the final result). The
following computation shows the correctness of the protocol:

W1 +W2 +W3

=− a1 ⊗ d1 − b1 ⊗ c1 − b1 ⊗ d1 + b2 ⊗ d2 + a3 ⊗ b3 + c3 ⊗ d3

=− a1 ⊗ d1 − b1 ⊗ c1 − b1 ⊗ d1 + (b1 + x)⊗ (d1 + y)
+ (a1 − x)⊗ d1 + b1 ⊗ (c1 − y)

=x⊗ y

To show that the functionality does provide a sufficient masking. We need the proposition below.

Theorem 3. For any adversary A we have

Pr


(x1,y1,x′

1,y′
1)← A(1λ)

(a1, b1, c1,d1,x2,x3,
b2,a3, b3,y2,y3,d2, c3,d3)

← FK,m,n
3PCTT (x1,y1,Corrupt = 1)
: A(a1, b1, c1,d1,
x2,y2,x3,y3) = 1

 = Pr


(x1,y1,x′

1,y′
1)← A(1λ)

(a1, b1, c1,d1,x2,x3,
b2,a3, b3,y2,y3,d2, c3,d3)

← FK,m,n
3PCTT (x′

1,y′
1,Corrupt = 1)

: A(a1, b1, c1,d1,
x2,y2,x3,y3) = 1


Similarly, we have

Pr


(x2,y2,x′

2,y′
2)← A(1λ)

(b2,d2,x1,x3,a1, b1,
a3, b3,y1,y3, c1,d1, c3,d3)

← FK,m,n
3PCTT (x2,y2,Corrupt = 2)

: A(b2,d2,x1,y1,x3,y3) = 1

 = Pr


(x2,y2,x′

2,y′
2)← A(1λ)

(b2,d2,x1,x3,a1, b1,
a3, b3,y1,y3, c1,d1, c3,d3)

← FK,m,n
3PCTT (x′

2,y′
2,Corrupt = 2)

: A(b2,d2,x1,y1,x3,y3) = 1


and

Pr


(x3,y3,x′

3,y′
3)← A(1λ)

(a3, b3, c3,d3,x1,x2,
a1, b1, b2,y1,y2, c1,d1,d2)

← FK,m,n
3PCTT (x3,y3,Corrupt = 3)
: A(a3, b3, c3,d3,
x1,y1,x2,y2) = 1

 = Pr


(x3,y3,x′

3,y′
3)← A(1λ)

(a3, b3, c3,d3,x1,x2,
a1, b1, b2,y1,y2, c1,d1,d2)

← FK,m,n
3PCTT (x′

3,y′
3,Corrupt = 3)

: A(a3, b3, c3,d3,
x1,y1,x2,y2) = 1



Well-behaved as the distribution protocol seems, it does not ensure the output masking. The key
reason the distribution protocol does not provide the masking is because after all Wi is a low rank
matrix which cannot provide a sufficient mask to anything to be announced. But we also need to
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emphasize that Wi is not supposed to be published directly in our setting. To resolve such a problem,
the participants may for instance apply a pseudorandom zero-sharing (PRZS) protocol introduced
in [22] or any similar secret sharing scheme to mask the final share before the publication. This
process is only needed in the final step and therefore will not increase the online communicational
and computational costs by much.

Alternatively, if such an extra procedure is not preferred, in applications it is suggested the MPC
function to be computed need to amalgamate multiple low rank matrices in the third component
of different tensor triples to ensure the mask is enough. For instance, when using tensor triples for
secure matrix product protocol, we suggest the number of columns of the first matrix, which is also
the number of rows of the second matrix, to be at least half of the maximal number of rows of
the first matrix and columns of the second matrix. In our implementation, however, we will take
the example of square matrix multiplication of size 1024× 1024 and hence does not have any such
problem. The output security is dependent of the MPC protocol to be processed and cannot be
formally stated generally. We here only state explicitly the output security for the secure square
matrix product protocol below for reference. The proofs of the two security statements will be
provided in the appendix.

Theorem 4. For any adversary A we have

Pr



({x1,l,y1,l,x′
1,l,y

′
1,l})← A(1λ),

({a1,l, b1,l, c1,l,d1,l,x2,l,x3,l,
b2,l,a3,l, b3,l,y2,l,y3,l,d2,l, c3,l,d3,l})
← FK,n,n

3PCTT({x1,l,y1,l},Corrupt = 1)
: A({a1,l, b1,l, c1,l,d1,l,

x2,l,y2,l,x3,l,y3,l},W2,W3) = 1
(l = 1, ..., n)


= Pr



({x1,l,y1,l,x′
1,l,y

′
1,l})← A(1λ),

({a1,l, b1,l, c1,l,d1,l,x2,l,x3,l,
b2,l,a3,l, b3,l,y2,l,y3,l,d2,l, c3,l,d3,l})
← FK,n,n

3PCTT({x′
1,l,y

′
1,l},Corrupt = 1)

: A({a1,l, b1,l, c1,l,d1,l,
x2,l,y2,l,x3,l,y3,l},W2,W3) = 1

(l = 1, ..., n)


computationally up to a negligible factor, where Wi =

∑n
l=1 Wi,l, i = 1, 2, 3. Similarly, we have

Pr



({x2,l,y2,l,x′
2,l,y

′
2,l})← A(1λ)

({b2,l,d2,l,x1,l,x3,l,a1,l, b1,l,
a3,l, b3,l,y1,l,y3,l, c1,l,d1,l, c3,l,d3,l})
← FK,n,n

3PCTT({x2,l,y2,l},Corrupt = 2)
: A({b2,l,d2,l,x1,l,y1,l,
x3,l,y3,l},W1,W3) = 1

(l = 1, ..., n)


= Pr



({x2,l,y2,l,x′
2,l,y

′
2,l})← A(1λ)

({b2,l,d2,l,x1,l,x3,l,a1,l, b1,l,
a3,l, b3,l,y1,l,y3,l, c1,l,d1,l, c3,l,d3,l})
← FK,n,n

3PCTT({x′
2,l,y

′
2,l},Corrupt = 2)

: A({b2,l,d2,l,x1,l,y1,l,
x3,l,y3,l},W1,W3) = 1

(l = 1, ..., n)


and

Pr



({x3,l,y3,l,x′
3,l,y

′
3,l})← A(1λ)

({a3,l, b3,l, c3,l,d3,l,x1,l,x2,l,
a1,l, b1,l, b2,l,y1,l,y2,l, c1,l,d1,l,d2,l})
← FK,m,n

3PCTT ({x3,l,y3,l},Corrupt = 3)
: A({a3,l, b3,l, c3,l,d3,l,

x1,l,y1,l,x2,l,y2,l},W1,W2) = 1
(l = 1, ..., n)


= Pr



({x3,l,y3,l,x′
3,l,y

′
3,l})← A(1λ)

({a3,l, b3,l, c3,l,d3,l,x1,l,x2,l,
a1,l, b1,l, b2,l,y1,l,y2,l, c1,l,d1,l,d2,l})
← FK,m,n

3PCTT ({x′
3,l,y

′
3,l},Corrupt = 3)

: A({a3,l, b3,l, c3,l,d3,l,
x1,l,y1,l,x2,l,y2,l},W1,W2) = 1

(l = 1, ..., n)


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4.2 Server-aided 3PC tensor triple distribution

3PC tensor triple distribution TT.3PCDist()

Players: A server S. Parties P1, P2, P3.
Distribution Phase:

1. Upon receiving (init, sidi) from all three parties, S starts its distribution.
2. S randomly samples seeds sdx,1, sdx,2, sdx,3, sdy,1, sdy,2, sdy,3, sdx,a, sdx,b, sdy,c, sdy,d;
3. S sends (sdx,1, sdy,1, sdx,a, sdx,b, sdy,c, sdy,d) to P1, (sdx,2, sdy,2) to P2, and

(sdx,3, sdy,3, sdx,b, sdy,d) to P3.
4. S computes x =

∑3
i=1 PRG(sdx,i), y =

∑3
i=1 PRG(sdy,i), a = PRG(sdx,a), b = PRG(sdx,b),

c = PRG(sdy,c), d = PRG(sdy,d). Then S computes block-by-block u2 = b + x,v2 = d + y,
u3 = a− x,v3 = c− y and continuously sends entries of (u2,v2) to P2 and entries of (u3,v3) to
P3. Once S finishes the distribution of all u2,v2,u3,v3, it goes to Step 2 and repeats the process.

5. When S receives (pause, sidi) from any party it pauses the distribution, and continues its com-
putation and distribution upon receiving (continue, sidi) from all three parties. When S receives
(stop, sidi) from all three parties, it stops the distribution and discards current data immediately.

Fig. 4. Server-aided 3PC tensor triple distribution protocol

3PC tensor triple utilization
For utilization in further protocols, P1, P2, P3 need keep tracks of the indices (flagx, flagy) of the entries
of x,y they have already exhausted. When an (m,n)-tensor triple is needed,

– P1 outputs ([x]1, [y]1, [W ]1), where

[x]1 = PRG(sdx,1)[flagx + 1, ..., flagx +m], [y]1 = PRG(sdy,1)[flagy + 1, ..., flagy + n],

and [W ]1 = −PRG(sdx,a)[flagx + 1, ..., flagx + m] ⊗ PRG(sdy,d)[flagy + 1, ..., flagy + n] −
PRG(sdx,b)[flagx + 1, ..., flagx + m] ⊗ PRG(sdy,c)[flagy + 1, ..., flagy + n] − PRG(sdx,b)[flagx +
1, ..., flagx +m]⊗ PRG(sdy,d)[flagy + 1, ..., flagy + n].

– P2 outputs ([x]2, [y]2, [W ]2), where

[x]2 = PRG(sdx,2)[flagx + 1, ..., flagx +m], [y]2 = PRG(sdy,2)[flagy + 1, ..., flagy + n],

and [W ]2 = u2[flagx + 1, ..., flagx +m]⊗ v2[flagy + 1, ..., flagy + n].
– P3 outputs ([x]3, [y]3, [W ]3), where

[x]3 = PRG(sdx,3)[flagx + 1, ..., flagx +m], [y]3 = PRG(sdy,3)[flagy + 1, ..., flagy + n],

and [W ]3 = u3[flagx + 1, ..., flagx +m]⊗ PRG(sdy,d)[flagy + 1, ..., flagy + n] + PRG(sdx,b)[flagx +
1, ..., flagx +m]⊗ v3[flagy + 1, ..., flagy + n].

– All three parties update the indices (flagx, flagy)← (flagx +m, flagy + n).

Fig. 5. 3PC tensor triple utilization process
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In this section we provide a practical way to fulfill the functionality FK,m,n
3PCTT with the aid of a

trusted server. The generation process is described explicitly in Fig. 4.
The distribution protocol uses a pseudo-random generator PRG. Due to the necessary property

of the distribution process described in the table we may assume PRG will be further implemented
using stream ciphers or block ciphers in a suitable mode of operation (CFB or CTR mode for
instance) so that the PRG function is computed block-by-block and may continue to extend as
the security parameter permits. The trusted server, once initializing the distribution process, will
continuously generate and distribute a tensor triple of an arbitrary length until receiving a pause or
stop signal. The parties can store the triple in parts as seeds and vectors without expanding them
in matrix forms. In the future when the parties launch a 3PC protocol and an (m,n)-tensor triple
is in need, they can trim the triple in suitable sizes and expand them according to the utilization
process described in Fig. 5.

Table 1. Comparison of communication cost of 3PC tensor triple generation protocols

Communication/Storage Total
sVOLE [5] 8λ+mn log |K|

3PC Tensor Triple 12λ+ 2(m+ n) log |K|

The main advantage of the distribution protocol is the improvement on the communication
and storage cost. Compared to the subfield VOLE type distribution protocol, the communication
and storage cost is considerably decreased, as shown in the Table 1. As an instance, the total
storage cost for a (1024, 1024)-tensor triple of 32-bit elements is approximately 4MB for sVOLE
but only approximately 16.2KB for 3PC tensor triples. Furthermore, the streamline construction of
the distribution protocol above does not work well for sVOLE triples, since the server in this case
would have to distribute a matrix which expands infinitely in two dimensions. Even if the server
can manage to fulfill this job, in further use the trimming process must on average discard 50% of
the entries as only the diagonal blocks can be used when trimming.

Furthermore, when a streamline process is applied, the utility rate of tensor triples is 100% since
the trimming procedure is applied to an infinite (or in practice, a considerably large) dimension.
This further improves the pre-computability of tensor triples. Using the server-aided protocol, the
participants do not need any prior knowledge of the sizes of the matrices occurred in further
protocols while being able to fully utilize all tensor triples distributed. As far as of the author’s
knowledge, this would be the first multi-dimensional pseudorandom correlation distribution which
can achieve such a property.

4.3 4PC tensor triple generation

When four or more parties are involved. The average communication cost can be further reduced
in the honest majority setting. We briefly introduce the protocol in Fig. 6.
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4PC tensor triple distribution TT.4PCDist()

Players: A trusted server S. Parties P1, P2, P3, P4.
Interacting Phase:

1. S randomly samples seeds sdx,1, sdx,2, sdx,3, sdx,4, sdy,1, sdy,2, sdy,3, sdy,4, sdx,a, sdy,b;
2. S computes x =

∑4
i=1 PRG1(sdx,i), y =

∑4
i=1 PRG2(sdy,i), a = PRG1(sdx,a), b = PRG2(sdy,b). It

then computes u = a + x,v = b + y;
3. S sends (sdx,1, sdy,1,u,v) to P1, (sdx,2, sdy,2,u, sdy,b) to P2, (sdx,3, sdy,3, sdx,a,v) to P3, and

(sdx,4, sdy,4, sdx,a, sdy,b) to P4.

Output:

– P1 outputs ([x]1 = PRG1(sdx,1), [y]1 = PRG2(sdy,1), [W ]1 = u⊗ v);
– P2 outputs ([x]2 = PRG1(sdx,2), [y]2 = PRG2(sdy,2), [W ]2 = −u⊗ PRG2(sdy,b));
– P3 outputs ([x]3 = PRG1(sdx,3), [y]3 = PRG2(sdy,3), [W ]3 = −PRG1(sdx,a)⊗ v);
– P4 outputs ([x]4 = PRG1(sdx,4), [y]4 = PRG2(sdy,4), [W ]4 = PRG1(sdx,a)⊗ PRG2(sdy,b)).

Fig. 6. Server-aided 4PC tensor triple distribution protocol

The correctness follows from the computation below.

W =[W ]1 + [W ]2 + [W ]3 + [W ]4

=(a + x)⊗ (b + y)− (a + x)⊗ b− a⊗ (b + y) + a⊗ b
=x⊗ y

For security, one could obtain a similar security proposition as in the 3PC case and we omit the
explicit statement for brevity.

For communicational efficiency, the protocol has a total communication cost 12λ+2(m+n) log q
bits and a maximal communication cost 2λ + (m + n) log q bits to a single party. This shows the
4PC protocol achieved a better communicational efficiency on average.

Similarly, in this setting we also assume Wi is never directly published. In this final annoucement
procedure, either Wi is adequately amalgamated or the final MPC share is extra masked.

4.4 More than four participants

If the number of participants is greater than four, there are ways to construct a similar decom-
position for each specific case, but the solutions in 3PC and 4PC cases do not have a systematic
generalization. Roughly speaking, we believe the main reason is due to the lack of a secure decom-
position in the 2PC setting, at least similar to ours, or more generally, the absence of a similar
decomposition in the case when the adversary can collude with exactly half of the participants.
Therefore, as the number of participants grows, we expect the asymptotic difficulty to construct
a secure server-aided tensor triple distribution protocol actually increases as well. Hence it is not
surprising the distribution protocols we propose do not attain a natural generalization.
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5 Implementation

Our implementations are based on C/C++. We have used OpenSSL library for the generation
process of cryptographic secure pseudorandom numbers. We use our method to generate 10,000
tensor triples of 128-bit length and of size 1024 × 1024 and compute the average time per triple.
The experiments are run on desktop with Intel i7-14700F 2.10 GHz CPU and 16GB RAM.

For sVOLE-based 3PC tensor triple generation method we utilize the protocol introduced in [7]
of a transformation from a generic 2PC simple bilinear correlation protocol to a MPC one, and then
apply the implementation realized in [6] for the 2PC primitive. The comparison of the performances
between the generic transformation and our method is listed in Table 2. We see our method achieves
an amazingly optimization in both computation and communication costs. As a reference, we also
provide a theoretical communication cost of the naive server-aided 3PC sVOLE-based tensor triple
generation protocol.

Table 2. Performance of 3PC (1024, 1024)-tensor triple generation implementations

sVOLE [6,7] sVOLE Ours
Type COT SOT Server-Aided Server-Aided

Generation time (ms) 1914 6813 - 4.23
Communication (MB) 3084 1377 16 0.063

Also, as a comparison with [10], the authors have achieved a generation of approximately 108,000
Beaver triples of 128-bit length for three parties, while our work is capable of generating approx-
imately 236 tensor triples for three parties of size 1024 × 1024 and 128-bit length. In the most
extravagent case, the three parties only use the diagonal entries as Beaver triples and our protocol
still provides approximately 242,000 Beaver triples of 128-bit length.

We also list the necessary offline cost in Table 3 for securely computing a matrix product of two
matrices of sizes 1024 × 1024 over 128-bit ambient space. The cost of the generic sVOLE method
is often unbearable in practice for its high memory storage cost, while our method only requires a
comparatively small and acceptable cost. As a reference, we also provide theoretical communication
and memory costs of the naive server-aided 3PC sVOLE-based tensor triple generation protocol.

Table 3. Offline cost of 3PC secure matrix multiplication protocol of dimensions 1024× 1024 and 128-bit
entry length

sVOLE [6,7] sVOLE Ours
Type COT SOT Server-Aided Server-Aided

Generation time (s) 1960 6977 - 4.4
Communication (GB) 3084 1377 16 0.063
Memory storage (GB) 24600 24600 48 48

As a remark, we see the importing of a server results in a significant raise in efficiency, both
communicatively and computationally.
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6 Conclusion

Tensor triple is a new kind of correlation which is very suitable for multi-dimensional MPC. It
can be used to accelerate many existing privacy-preserving biometric idenfication protocols and
privacy-preserving machine learning protocols which mainly involve vector and matrix operations.
Our method provides an extremely efficient way to generate and distribute tensor triples in 3PC
and 4PC honest majority settings. This further enables the capability of tensor triple to provide
masks for high dimensional matrix objects and facilitate the MPC protocols in which large matrices
together with their interactions are heavily involved, such as privacy-preserving machine learning
protocols. In follow-up works we will also apply the server-aided tensor triple distribution protocols
to assist various privacy-preserving machine learning protocols.
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A Proof of masking

In chapter 3 we introduced the two types of security of our tensor triple distribution protocol in
Theorem 3 and Theorem 4. We provide proofs of the statements in this section.

Proof of theorem 3. We prove by cases.

1. P1 is corrupted:
The simulator receives (x1,y1,x′

1,y′
1) from A. It flips a fair coin to determine his choice of

(xsim
1 ,ysim

1 ). It then samples

xsim
2 ,xsim

3 ←$ Km, ysim
2 ,ysim

3 ←$ Kn.

Then it computes

xsim =

3∑
i=1

xsim
i , ysim =

3∑
i=1

ysim
i .

It then samples
asim
1 ,bsim

1 ←$ Km, csim
1 ,dsim

1 ←$ Kn.

It then computes and sets

bsim
2 = bsim

1 + xsim, dsim
2 = dsim

1 + ysim,

and
asim
3 = asim

1 − xsim, csim
3 = csim

1 − ysim

as well as bsim
3 = bsim

1 and dsim
3 = dsim

1 . At last the simulator outputs the following:
– (xsim

1 ,ysim
1 ,asim

1 ,bsim
1 , csim

1 ,dsim
1 ) to P1,

– (xsim
2 ,ysim

2 ,bsim
2 ,dsim

2 ) to P2 and
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– (xsim
3 ,ysim

3 ,asim
3 ,bsim

3 , csim
3 ,dsim

3 ) to P3.
The simulator above simulates perfectly the functionality and it can seen the joint probability
distribution of

(asim
1 ,bsim

1 , csim
1 ,dsim

1 ,xsim
2 ,ysim

2 ,xsim
3 ,ysim

3 )

is independent of the distribution of (xsim
1 ,ysim

1 ).
2. P2 is corrupted:

The simulator receives (x2,y2,x′
2,y′

2) from A. It flips a fair coin to determine his choice of
(xsim

2 ,ysim
2 ). It then samples

xsim
1 ,xsim

3 ←$ Km, ysim
1 ,ysim

3 ←$ Kn.

Then it computes

xsim =

3∑
i=1

xsim
i , ysim =

3∑
i=1

ysim
i .

It then samples
asim
1 ,bsim

2 ←$ Km, csim
1 ,dsim

2 ←$ Kn.

It then computes and sets

bsim
1 = bsim

2 − xsim, dsim
1 = dsim

2 − ysim,

and
asim
3 = asim

1 − xsim, csim
3 = csim

1 − ysim

as well as bsim
3 = bsim

1 and dsim
3 = dsim

1 . At last the simulator outputs the following:
– (xsim

1 ,ysim
1 ,asim

1 ,bsim
1 , csim

1 ,dsim
1 ) to P1,

– (xsim
2 ,ysim

2 ,bsim
2 ,dsim

2 ) to P2 and
– (xsim

3 ,ysim
3 ,asim

3 ,bsim
3 , csim

3 ,dsim
3 ) to P3.

The simulator above simulates perfectly the functionality and it can seen the joint probability
distribution of

(bsim
2 ,dsim

2 ,xsim
1 ,ysim

1 ,xsim
3 ,ysim

3 )

is independent of the distribution of (xsim
2 ,ysim

2 ).
3. P3 is corrupted:

The simulator receives (x3,y3,x′
3,y′

3) from A. It flips a fair coin to determine his choice of
(xsim

3 ,ysim
3 ). It then samples

xsim
1 ,xsim

2 ←$ Km, ysim
1 ,ysim

2 ←$ Kn.

Then it computes

xsim =

3∑
i=1

xsim
i , ysim =

3∑
i=1

ysim
i .

It then samples
asim
3 ,bsim

3 ←$ Km, csim
3 ,dsim

3 ←$ Kn.

It then computes and sets

bsim
2 = bsim

3 + xsim, dsim
2 = dsim

3 + ysim,

and
asim
1 = asim

3 + xsim, csim
1 = csim

3 + ysim

as well as bsim
1 = bsim

3 and dsim
1 = dsim

3 . At last the simulator outputs the following:
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– (xsim
1 ,ysim

1 ,asim
1 ,bsim

1 , csim
1 ,dsim

1 ) to P1,
– (xsim

2 ,ysim
2 ,bsim

2 ,dsim
2 ) to P2 and

– (xsim
3 ,ysim

3 ,asim
3 ,bsim

3 , csim
3 ,dsim

3 ) to P3.
The simulator above simulates perfectly the functionality and it can seen the joint probability
distribution of

(asim
3 ,bsim

3 , csim
3 ,dsim

3 ,xsim
1 ,ysim

1 ,xsim
2 ,ysim

2 )

is independent of the distribution of (xsim
3 ,ysim

3 ).

Proof of theorem 4. We prove by showing the security can be reduced to the security of a generic
simple bilinear correlation protocol introduced in [7]. We only prove the case where P1 is corrupted
and the proof for the rest of the cases is similar.

For the l-th call of the functionality FK,n,n
3PCTT, the simulator receives (x1,l,y1,l,x′

1,l,y
′
1,l) from A.

It flips a fair coin to determine his choice of (xsim
1,l ,y

sim
1,l ). It then samples

xsim
2,l ,x

sim
3,l ←$ Km, ysim

2,l ,y
sim
3,l ←$ Kn.

Then it computes

xsim
full,l =

3∑
i=1

xsim
i,l , ysim

full,l =

3∑
i=1

ysim
i,l .

It then samples
asim
1,l ,b

sim
1,l ←$ Km, csim

1,l ,d
sim
1,l ←$ Kn.

It then computes and sets

bsim
2,l = bsim

1,l + xsim
full,l, dsim

2,l = dsim
1,l + ysim

full,l,

and
asim
3,l = asim

1,l − xsim
full,l, csim

3,l = csim
1,l − ysim

full,l

as well as bsim
3,l = bsim

1,l and dsim
3,l = dsim

1,l . At last the simulator outputs the following:

– (xsim
1,l ,y

sim
1,l ,a

sim
1,l ,b

sim
1,l , csim

1,l ,d
sim
1,l ) to P1,

– (xsim
2,l ,y

sim
2,l ,b

sim
2,l ,d

sim
2,l ) to P2 and

– (xsim
3,l ,y

sim
3,l ,a

sim
3,l ,b

sim
3,l , csim

3,l ,d
sim
3,l ) to P3.

The simulator above simulates perfectly the functionality. Now note that

W2 = (B +X)(D + Y ),

W3 = (A−X)D +B(C − Y ),

where
A = (aT

1,l)
n
l=1, B = (bT

1,l)
n
l=1,

C = (c1,l)nl=1, D = (d1,l)
n
l=1,

and
X = (xT

full,l)
n
l=1, Y = (yfull,l)

n
l=1.
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The adversary A will obtain

({a1,l,b1,l, c1,l,d1,l,

x2,l,y2,l,x3,l,y3,l},W2,W3)

Assume A has a probabilistic polynomial time algorithm which is able to distinguish the two settings

({x1,l,y1,l,x′
1,l,y

′
1,l})← A(1λ),

({a1,l,b1,l, c1,l,d1,l,x2,l,x3,l,
b2,l,a3,l,b3,l,y2,l,y3,l,d2,l, c3,l,d3,l})
← FK,n,n

3PCTT({x1,l,y1,l},Corrupt = 1)
: A ← ({a1,l,b1,l, c1,l,d1,l,
x2,l,y2,l,x3,l,y3,l},W2,W3)

(l = 1, ..., n)


and 

({x1,l,y1,l,x′
1,l,y

′
1,l})← A(1λ),

({a1,l,b1,l, c1,l,d1,l,x2,l,x3,l,
b2,l,a3,l,b3,l,y2,l,y3,l,d2,l, c3,l,d3,l})
← FK,n,n

3PCTT({x′
1,l,y

′
1,l},Corrupt = 1)

: A ← ({a1,l,b1,l, c1,l,d1,l,
x2,l,y2,l,x3,l,y3,l},W2,W3)

(l = 1, ..., n)


which we denote by A1 with a non-negligible advantage. Then we consider a simple bilinear corre-
lation functionality FK,n,n

SBC to provide

(ui, xi,vi)←$Kn × F× Fn

∼=Kn ×Kn ×Kn×n.

A now calls FK,n,n
SBC for n times and colludes with P1. Consider the canonical isomorphism of vectors

φ : F→ Kn. For instance,

φ(a0 + a1α+ ...+ an−1α
n−1) = (a0, ..., an−1)

where F is realized through an extension K[α] by adding a root of an irreducible monic polynomial
of degree n. A sends to the simulator

(u1,l, x1,l) = (x1,l, φ
−1(y1,l))

and
(u′

1,l, x
′
1,l) = (x′

1,l, φ
−1(y′

1,l))

for 1 ≤ l ≤ n.
Suppose for the l-th call of FK,n,n

SBC , the simulator returns (ui,l, xi,l,vi,l) to Pi. According to the
security assumption in [7]. A has access to

(u2,l, x2,l,v2,l,u3,l, x3,l,v3,l).
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Now A input to A1 the following data:

(x2,l = u2,l,y2,l = φ−1(x2,l),

x3,l = u3,l,y3,l = φ−1(x3,l),

W2 = φ−1(

n∑
l=1

v2,l),W3 = φ−1(

n∑
l=1

v3,l),

W1,l = φ−1(v1,l)).

Note that W2 and W3 are computationally indistinguishable from two uniformly random ma-
trices (B,D randomizes W2 and then A,C randomizes W3). Hence the distributions of Wi and
φ−1(

∑n
l=1 vi,l) can be considered identical computationally. Then A obtains a non-negligible ad-

vantage on distinguishing the two settings

({u1,l, x1,l,u′
1,l, x

′
1,l})← A(1λ),

({ui,l, xi,l,vi,l})
← FK,n,n

SBC ({u1,l, x1,l},Corrupt = 1)
: A ← ({u2,l, x2,l,v2,l,
u3,l, x3,l,v3,l,v1,l})

(l = 1, ..., n)


and 

({u1,l, x1,l,u′
1,l, x

′
1,l})← A(1λ),

({ui,l, xi,l,vi,l})
← FK,n,n

SBC ({u′
1,l, x

′
1,l},Corrupt = 1)

: A ← ({u2,l, x2,l,v2,l,
u3,l, x3,l,v3,l,v1,l})

(l = 1, ..., n)


This gives a probabilistic polynomial time algorithm to break the functionality FK,n,n

SBC given an
oracle distinguishing settings in FK,n,n

3PCTT. This finishes the security reduction for a colluded P1.
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