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Abstract. Unprotected cryptographic implementations are vulnerable to implementa-
tion attacks, such as passive side-channel attacks and active fault injection attacks.
Recently, countermeasures like polynomial masking and duplicated masking have
been introduced to protect implementations against combined attacks that exploit
leakage and faults simultaneously. While duplicated masking requires O (t · e) shares
to resist an adversary capable of probing t values and faulting e values, polynomial
masking requires only O (t + e) shares, which is particularly beneficial for affine com-
putation. At CHES’24, Arnold et al. showed how to further improve the efficiency of
polynomial masking in the presence of combined attacks by embedding two secrets
into one polynomial sharing. This essentially reduces the complexity of previous
constructions by half. The authors also observed that using techniques from packed
secret sharing (Grosso et al., CHES’13) cannot easily achieve combined resilience to
encode an arbitrary number of secrets in one polynomial encoding. In this work, we
resolve these challenges and show that it is possible to embed an arbitrary number
of secrets in one encoding and propose gadgets that are secure against combined
attacks. We present two constructions that are generic and significantly improve the
computational and randomness complexity of existing compilers, such as the laOla
compiler presented by Berndt et al. at CRYPTO’23 and its improvement by Arnold
et al. For example, for an AES evaluation that protects against t probes and e faults,
we improve the randomness complexity of the state-of-the-art construction when
t + e > 3, leading to an improvement of up to a factor of 2.41.
Keywords: Polynomial Masking · Parallel Computation · Packed Secret Sharing ·
Leakage and Fault Resilience · Combined Attacks

1 Introduction
Since the late nineties, it is well-known that cryptographic implementations can successfully
be broken by physical attacks. Such attacks exploit physical phenomena such as the power
consumption [KJJ99], noise [GST14], or electromagnetic radiation [GMO01]; or allow an
adversary to induce faults through clock glitches [DEG+18], voltage glitches [ZDCT13],
electromagnetic pulses [DDRT12, DLM19], and laser beams [BS97, SA02]. While side-
channel attacks are passive and enable the adversary to learn sensitive intermediate
information about computations, fault attacks actively manipulate the inner workings of
cryptographic implementations.

A widely used countermeasure against side-channel attacks is masking. A masking
scheme uses an encoding that splits a sensitive value v into a vector (F0, . . . , Fn−1) of
n values, called shares, such that a specific number of shares is needed to reconstruct v.
Two of the most commonly used encodings are additive masking and polynomial masking.
Additive masking generates n− 1 shares F0, . . . , Fn−2 uniformly at random from a finite
field F, and then sets Fn−1 such that v =

∑n−1
i=0 Fi. Alternatively, polynomial masking
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constructs a polynomial p(X) = v + a1X
1 + · · · + adX

d, such that the coefficients ai

are chosen uniformly at random, and the constant term represents the secret. Then, the
shares are defined as function values Fi = p(xi) with predetermined non-zero pairwise
distinct support points x0, . . . , xn−1. Intuitively, masked implementations compute on
such encodings such that the leakage depends only on a limited number of shares. Due to
the properties of the encoding, this implies that the leakage does not contain any sensitive
information about the shared secrets.

Generally, additive masking is highly efficient in terms of randomness and computational
complexity while protecting against a passive adversary measuring up to t (< n) values in
the masked implementation. However, if no further countermeasures are used, the scheme
becomes vulnerable to active fault attacks [GIP+15]. For instance, an adversary can insert
a single fault by adding ξ to one share Fi that leads to a valid encoding corresponding to
the secret v + ξ. Even worse, the advantage of an attacker launching both a side-channel
and fault attack can far exceed the sum of the advantages of each individual attack. The
core issue is that faults can not only alter the input-output behavior of a cryptographic
implementation but also compromise the effectiveness of leakage countermeasures. This
has, for example, been demonstrated in studies by Berndt et al. [BEF+23] and Feldtkeller et
al. [FRSG22]. Hence, it is necessary to design countermeasures that protect cryptographic
implementations against both side-channel and fault attacks and achieve so-called combined
resilience.

Countermeasures for Combined Resilience. While countermeasures against standalone
side-channel attacks and fault attacks are well-established, protection against attacks
that exploit both leakage and faults simultaneously has only recently been explored.
One approach to protect against combined attacks is duplication of t-th order masked
computation, where each sharing (and computation on it) is copied (and executed) e+ 1
times. This allows the detection of any e faults as at least one share stays unaffected by the
faults. However, achieving security against t probes and e faults requires O (t · e) shares1

[DN20, RFSG22], which is particularly costly for masked affine computation. Moreover,
the duplication technique makes the masked computation susceptible to more powerful
adversaries, e.g., exploiting horizontal attacks [BCPZ16, BEF+23].

A recent direction to address these shortcomings is to use polynomial masking [SFES18,
BEF+23, ABEO24]. The idea is that if a fault is added to a share of a polynomial masked
secret, the degree of the recovered polynomial increases, making the fault detectable.
Therefore, one can show that polynomial masking with O(t + e) shares achieves the
same security as additive masking with O(t · e) shares [GIP+15, SFES18, DN20, GPS21,
FRSG22, FGM+23]. While polynomial masking offers strong combined resilience, masking
computation is more costly than using standard additive masking. Recently, Arnold et
al. [ABEO24] showed how to improve the efficiency of polynomial masking with combined
resilience by sharing two secrets with one polynomial. Technically, this is achieved by
placing the secrets in the highest and lowest monomials of the polynomial. Arnold et
al. [ABEO24] showed that such an approach is particularly useful for parallel computation,
where the goal is to compute multiple circuits with the same structure but on different
inputs (e.g., think of the AES computing the 16 S-Boxes in parallel).

Packed Secret Sharing. In the context of secure multi-party computation (MPC),
Franklin and Yung [FY92] introduced the concept of packed secret sharing to securely
evaluate functions that compute on many inputs. In packed secret sharing, for a random
polynomial f one can store secrets at multiple support points f(ui), for ui pairwise distinct.
Damgård et al. [DIK10] showed how to use packed secret sharing for securely computing

1Please note that [DN20, RFSG22] use e + 1 exact copies of t + 1 shares which leads to a total of
(t + 1) · (e + 1) shares, and all the subsequent operations are executed on these (t + 1) · (e + 1) shares.
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arbitrary functions among n parties with quasilinear complexity. This approach inspired
Grosso et al. [GSF14], who showed how to use packed-secret sharing to protect against
side-channel leakage. To obtain an efficient scheme, the authors rely on a “trick” proposed
by Damgård et al. [DIK10], where a “masked version” of the shared secrets is reconstructed
and then re-shared. While this approach works well in the presence of side-channel leakage,
an adversary can fault the temporarily reconstructed values, thereby inducing undetectable
faults2. The main contribution of this work is to present new techniques to extend packed
secret sharing based polynomial masking such that it can resist combined attacks. We
provide more details on our contribution below.

1.1 Contribution

Our overall objective is to develop compilers for parallel computation that remain secure
against combined attacks, where an adversary can measure t probes and simultaneously
insert e faults. To this end, we extend the work of Grosso et al. [GSF14] and demonstrate
that refined linear modifications enable the use of packed secret sharing in already existing
combined-resilient circuits. Further, we developed new gadgets that are particularly useful
for packed secret sharing. As case studies of our main techniques, we present a detailed
analysis of a linear compiler, an adaption of the well-known BGW compiler [BGW88],
as well as the recently proposed LaOla compiler [BEF+23]. Additionally, we introduce a
novel modified Frobenius exponentiation gadget that efficiently (share-wise) computes the
exponentiation of secrets on packed secret shares. Figure 1 illustrates the effectiveness
of our approaches through AES encryption. The concrete numbers are given in Table 1
for t, e ≤ 8, and a detailed analysis of these values is provided in Section G. For a better
comparison with the duplicated Boolean masking [FRSG22, FGM+23] we give the efficiency
of all constructions in terms of Boolean circuit complexity and random bit complexity.

In Figure 1, we depict the random bit complexity (cf. Fig. 1a) and the Boolean circuit
complexity (cf. Fig. 1b) for one round of AES-128 with respect to 16 inputs, using our
BGW-based PSS and LaOla-based PSS compiler, the LaOla compiler of [BEF+23], the
double-sharing compiler [ABEO24], and the duplicated Boolean masking approach of
[FRSG22, FGM+23]. Note that the computational and randomness complexities presented
in Table 1 and Figure 1 do not include the final error detection mechanism for any of the
example constructions listed. Due to our fault-robustness property, all our constructions
require fault detection gadgets solely immediately before decoding the final outputs.
The complexity impact of the final error detection on the presented values is minimal.
For instance, in the BGW-based PSS approach with t = e = 3 (or t = e = 8), the
computational complexity increases only slightly from 10.431 · 106 to 10.717 · 106 (or
42.785 · 106 to 45.720 · 106), while still outperforming the duplicated Boolean Masking
approach in [FRSG22, FGM+23]. As the duplication requires error detection after each
gadget and our construction only for the final outputs, this effect becomes even more
relevant with larger circuits. A formal discussion is provided in Section 6.

We emphasize that this work operates in a finite field, which is chosen to be F28 for
this example. Moreover, this work can resist t field element probes and detect e field
element faults. In contrast, duplicate Boolean masking [FRSG22, FGM+23] operates in
the binary field F2 and can resist t glitch-extended bit-probes and correct e bit-faults.
A crucial error correction component for achieving combined security in the duplicated
Boolean masking [FRSG22, FGM+23] is a sorting-based majority function. As no concrete
sorting algorithm was chosen by [FRSG22, FGM+23], we choose the insertion sort, which
is known to be efficient for a small number of faults e (cf. [CLRS22, YYG11]). For further
details, we refer to Supplementary Material G.1.

2Indeed, even one fault is sufficient to break the scheme of Grosso et al. [GSF14].
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(a) Random Bit Complexity
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(b) Boolean Circuit Complexity

Figure 1: Random bit complexity (a) and Boolean circuit complexity (b) for one AES
round of our BGW-based PSS (⋄) and LaOla-based PSS compiler (△), the original
LaOla [BEF+23] (□) and double-sharing compiler [ABEO24] (◦), and the Duplicated
Boolean Masking [FRSG22, FGM+23] (□). The security parameters are t probes and e
faults with e = t.

Table 1: Random bit complexity (×104) and Boolean circuit complexity (×106) for
one AES round of our BGW-based PSS and LaOla-based PSS compiler, the original
LaOla [BEF+23] and the double-sharing compiler [ABEO24], and the Duplicated Boolean
masking [FRSG22, FGM+23] as in Figure 1. The security parameters are t probes and e
faults with e = t and e, t ∈ {1, . . . , 8}. The best complexity is marked in bold.
t = e

LaOla
[BEF+23]

Double-Sharing
[ABEO24]

LaOla-based PSS
(this work)

BGW-based PSS
(this work)

Dup. Boolean Mask
[FRSG22, FGM+23]

Rand Comp Rand Comp Rand Comp Rand Comp Rand Comp
1 0.410 0.804 0.589 0.941 5.304 41.981 0.245 4.018 0.115 1.260
2 1.331 2.634 1.2864 2.499 5.433 44.276 0.533 6.841 0.346 12.792
3 2.764 6.262 2.253 5.241 5.562 46.632 0.864 10.431 0.691 60.716
4 4.710 12.340 3.488 9.508 5.690 49.048 1.238 14.871 1.152 197.630
5 7.168 21.521 4.992 15.643 5.819 51.525 1.656 20.244 1.728 512.024
6 10.137 34.458 6.765 23.988 5.948 54.062 2.117 26.632 2.419 1137.670
7 13.619 51.804 8.806 34.888 6.077 56.660 2.621 34.118 3.226 2263.032
8 17.613 74.211 11.117 48.683 6.206 59.319 3.168 42.785 4.147 4140.661

(1) Linear Compiler. The most challenging aspect of our compiler is that packed secret
sharing involves multiple secrets at pairwise distinct support points, and some computation
requires securely permuting the secrets with these support points.

For example, a simple share-wise addition of two masked secrets s0 = f(u0), s1 =
f(u1), . . . , sd = f(ud) and s′

0 = g(u0), s′
1 = g(u1), . . . , s′

d = g(ud) using support points
u0, u1, . . . , ud easily generates a new masking with secrets h(u0), h(u1), . . . , h(ud) such
that it holds h(ui) = si + s′

i, (cf. Sec. 3). However, the complexity increases when
permuted operations are required, such as h(ui) = si + s′

π(i) for an arbitrary permutation
π : {0, 1, . . . , d} → {0, 1, . . . , d}. For this reason, we present a new combined resilient
gadget that efficiently implements various operations, such as permutations for packed
secret sharing in Section 3.4.

(2) BGW Approach. We address the issues highlighted in the work of Grosso et
al. [GSF14]. Specifically, Section 4 demonstrates that parallel computation with packed
secret sharing can be implemented without the need for intermediate reconstruction that
is vulnerable to fault attacks. To avoid such vulnerabilities, we build a BGW-based PSS
compiler by extending Franklin and Yung’s work [FY92], which illustrates how the seminal
BGW construction [BGW88] can be used with packed secret sharing for combined resilience.
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In particular, we adapt these constructions such that we can rigorously prove their security
against combined leakage and fault attacks. Further, we reduced the randomness com-
plexity by incorporating optimizations proposed by Gennaro et al. [GRR98]. Considering
one AES round, our BGW-based PSS compiler improves the recently optimized version
of Arnold et al. [ABEO24] from t + e ≥ 2 considering the randomness complexity and
from t + e > 13 regarding the computational complexity. In general, our BGW-based
PSS compiler improves the version of Arnold et al. [ABEO24] by a factor of 4.31 (resp.
1.87) regarding the randomness (resp. computational) complexity of one AES round for
t+ e > 30.

(3) LaOla Approach. Additionally, we build the LaOla-based PSS compiler by applying
similar modifications to the recently proposed LaOla compiler and formally prove the
combined resilience property of our compiler (cf. Sec. 4). While our BGW-based PSS
compiler requires 2d+ e+ 1 shares for technical reasons, our LaOla-based PSS compiler
achieves the same combined resilience using only d+e+1 shares. Although this improvement
entails slightly more complex constructions for nonlinear computations, it often results
in greater efficiency for our methods. Notably, Figure 1 illustrates that this approach is
more efficient for AES with higher security orders. For example, our LaOla-based PSS
compiler improves our BGW-based PSS compiler approach by a factor of 1.95 regarding
the computational complexity.

(4) Frobenius Optimization. The Frobenius property enables efficient exponentiation of
masked secrets. Concretely, we have developed a share-wise operating gadget that allows
for the exponentiation of all secrets within a packed secret sharing (cf. Sec. 5). Additionally,
we provide a formal proof of its combined security. For example, this gadget improves
the efficiency of an AES round (with security parameters t + e > 30) by achieving 7
squaring operations using only 7 share-wise multiplication, which improves the randomness
complexity by a factor of 4.31. We emphasize that this improvement is also significant for
low-order security.

1.2 Related Work
Recently, two different approaches to achieve combined resilience have been proposed:
duplicated (additive) masking [DN20, FRSG22, RFSG22, FGM+23] and polynomial mask-
ing [BEF+23, ABEO24]. The duplicated approach can be viewed as a composition of
leakage-resilient and fault-resilient encoding. It uses additive masking as a leakage-resilient
encoding and then duplicates, i.e., copies, each share O (e) times for fault resilience. While
this technique allows for relatively fast and secure bit operations, it requires at least
O (t · e) shares and lacks the properties necessary to encode multiple secrets together,
as we do with polynomial masking using packed secret sharing [FY92]. However, the
approach of [FRSG22, FGM+23] remains very efficient for non-parallelized computations
and computations in binary fields (cf. Sec. 7.3). Moreover, while Boolean masking with
error detection [DN20] has shown some vulnerability to Statistical Ineffective Fault Attacks
(SIFA) (cf. [RFSG22]), recent works [FRSG22, FGM+23] propose combining Boolean
masking with error correction to address this issue. Although this approach introduces
a higher computational cost compared to error detection, it offers enhanced protection
against SIFA. Our security analyses for polynomial masking circumvent this issue as
we prove fault robustness (cf. Def. 3). The robustness property is specifically designed
to address ineffective faults, such as those in SIFA attacks, by ensuring that any fault
results in corrupted outputs. Additionally, we demonstrate that with (weak) fault-resilient
SNI [BEF+23], the effects of each fault can be simulated without the underlying secrets.

Following the ideas of Arnold et al. [ABEO24], we consider packed secret sharing
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to mask multiple secrets using only one polynomial. As mentioned in their work, they
encountered issues raised by Grosso et al. [GSF14], making it challenging to protect
their leakage-resilient computation on packed secret sharing against combined attacks
(cf. Sec. 4). Consequently, they proposed an elegant compromise solution: instead of
encoding arbitrarily many secrets together, they suggested methods for jointly encoding
two secrets. The advantage of their modified encoding is that it still allows for computation
that is not only standalone leakage-resilient but also combined-resilient. Specifically, they
adapted the LaOla compiler presented by Berndt et al. [BEF+23] to compute two identical
circuits with different inputs in parallel at the cost of one. Hence, their approach almost
halved the complexity of a protected AES evaluation (cf. Fig. 1). Building on the work of
Arnold et al., our research resolves all the issues raised by Grosso et al. and presents the
first compiler that is secure against combined attacks while using packed secret sharing.
As we are now able to compute an arbitrary number of secrets in parallel, this significantly
improves the complexity of the protected computation (see Fig. 1).

In addition to a series of prior works [DN20, FRSG22, RFSG22, FGM+23, BEF+23,
ABEO24] which do consider combined resilience, the recent work of Carlet et al. [CDGT24]
presented efficient constructions considering parallel computations, however [CDGT24]
is only provably secure against standalone leakage attacks and standalone fault attacks.
Specifically, since fault attacks can significantly compromise the effectiveness of leakage
countermeasures, these constructions are not immediately provably secure against combined
attacks (e.g., consider an adversary that faults some computation and observes the effect
via leakage). One notable example is the work of Carlet et al. [CDGT24], who propose a
masking scheme with quasi-linear complexity based on packed secret sharing and fast Fourier
transform (FFT). The analysis only considers standalone attacks against leakage and fault
attacks. It remains an interesting open question if the techniques (most importantly the
FFT) can be used in the context of combined resilience. The main challenge is that when
considering combined attacks where the adversary can simultaneously measure probes
and introduce faults, we require a pre-calculated matrix for error detection (cf. Sec. 4),
preventing us from using the FFT optimization. Further, their multiplication of encodings
is split into two separate calculation steps. Carlet et al. pointed out in [CDGT24,
Sec. 6.4 on p. 420] that two simultaneous faults could be introduced in these two
steps, and it remains an open question whether these faults can be effectively detected.
Table 2 and Table 3 numerically compare the constructions presented in our work with
other combined resilient constructions [DN20, FRSG22, FGM+23, BEF+23, ABEO24].
Especially, the work [ABEO24] supports circuit evaluation in parallel for two inputs.
Although [CDGT24] is not provably secure in our stronger combined model, it allows for
parallel evaluation of k different inputs, similar to our work on packed secret sharing, and
hence for completeness we include it in our comparison.

2 Preliminaries and Notation
Notation. By n ∈ N≥2, we denote the number of shares on which we operate. Moreover,
let F denote some finite field with at least n + 1 elements. We primarily work with
polynomials of degree d, constructed using secrets denoted as vi ∈ F and, when necessary,

3To the best of our knowledge, the only existing gadget constructions requiring linear number of shares
and proved to be combined secure against adaptive adversaries are those from [BEF+23, ABEO24], where
the adaptive adversaries can use information from previous leakage to insert faults. This work adapted
the gadget constructions from [BEF+23, ABEO24] while maintaining the combined security property.

4It was shown by Berndt et al. [BEF+23] that the refresh gadget from [SFES18] is not SNI.
5Note that Carlet et al. [CDGT24] focused on the security against non-adaptive adversaries that execute

probing and fault injecting attacks independently, which is slightly different from the combined security
model considered in this work and [BEF+23, ABEO24]. Importantly, the multiplication and refresh gadget
from [CDGT24] are not SNI.
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Table 2: A comparison of the combined secure compilers3 with regard to the masking
scheme, the number of parallelizable inputs, the number of shares, and security properties.
We adjust the parameters such that all the compilers can tolerate t probes and detect
e injected faults. ✓ are protocols not susceptible to the horizontal attacks [BCPZ16] or
secure against adaptive adversaries, ✗ are vulnerable solutions, and − are the solutions
that consider non-adaptive adversaries.

Masking
Scheme Compiler # Parallelizable

Inputs # Shares Adaptive
Adversary

Horizontal
Attacks

Duplicated Boolean
Masking

[DN20] 1 (t+ 1) · (e+ 1) − ✗
[FRSG22, FGM+23] 1 (t+ 1) · (2e+ 1) − ✗

Polynomial Masking

[SFES18] 1 2t+ e+ 1 − ✗
[BEF+23] 1 t+ e+ 1 ✓ ✓
[ABEO24] 2 t+ e+ 2 ✓ ✓

[CDGT24]* k 2(t+ k) + e− 1 − ✗
LaOla-based PSS

(this work) k
linear operation: t + k + e

non-linear operation: t + 2k + e
✓ ✓

BGW-based PSS
(this work) k 2t + 2k + e − 1 ✓ ✓

Table 3: A comparison of the computational and randomness complexity of the addition,
multiplication, and refresh gadgets when given k inputs, with regard to probing security
t, detectable injected faults e, and n = t+ e+ 1. SNI gadgets with the best asymptotic
complexity are marked in bold. We only keep the highest-order terms.

Compiler Addition Multiplication Refresh
Comp Rand Comp Rand Comp

[DN20] O
(
kn2) O

(
kn2) O

(
kn3) O

(
kn2) O

(
kn3)

[FRSG22, FGM+23] O
(
kn2) O

(
kn2) O

(
kn3) O

(
kn2) O

(
kn3)

[SFES18]*4 O(kn) O
(
kn2) O

(
kn3) O (kt) O

(
kt2 + kte+ kt

)
[BEF+23] kn k

(
3t2 + 2te

)
k
(
6t3 + 10t2e+ 4te2) k

(
t2 + t

)
k
(
2t3 + 2t2e

)
[ABEO24] 1

2k (n+ 1) 1
2k
(
3t2 + 2te

) 1
2k
(
6t3 + 10t2e+ 4te2) 1

2k
(
t2 + t

) 1
2k
(
2t3 + 2t2e

)
[CDGT24]*5 kt t 2k2 + 2kt kt kt+ k2

LaOla-based PSS
(this work) n + k − 1 3t2 + 2te + tk

−ke − k2

6t3 + 10t2e + 4te2

+4ekt + 8kt2 − 2k3

−4ek2 − 2e2k
t2 2t3 + 2t2e + 2kt2

BGW-based PSS
(this work) n+ 2k + t− 2 2t2 + te + 2tk

8t3 + 8t2e + 2te2

+8ekt + 16kt2 + 8k2t
t2 4t3 + 2t2e+ 4kt2

random elements ri ←$F, for i ∈ [d + 1]. If v := (v0, . . . , vd) ∈ Fd+1 is a vector and
I ⊆ {0, . . . , d} is a subset of the indices, we define vI := (vi)i∈I . We use ∗ to denote the
Hadamard (or element-wise) product between two vectors or matrices. We denote the set
{0, . . . , n− 1} by [n]. The Hamming weight weight(v) of a vector v ∈ Fd+1 is the number
of non-zero entries of v. For a matrix A ∈ Fm×n, Ai,j denotes the j-th element in the i-th
row. We refer to the identity matrix as I. By writing (y0, . . . , yn−1) ←$Fn, we mean that
all yi with i ∈ [n] are chosen independently and uniformly at random from the field F.
Moreover, for values x0, . . . , xn−1 ∈ F, we denote the Vandermonde matrix that has d+ 1
rows and n columns (or (d+ 1)× n matrix for simplicity) by

Van(d+1)×n (x0, . . . , xn−1) =


1 1 1 . . . 1
x0 x1 x2 . . . xn−1
x2

0 x2
1 x2

2 . . . x2
n−1

...
...

... . . . ...
xd

0 xd
1 xd

2 . . . xd
n−1


(d+1)×n

,

and its inverse by Van−1
(d+1)×n (x0, . . . , xn−1). In Section 2.2, we can use Van(d+1)×n (x0, . . . , xn−1)

to generate n shares for a degree-d polynomial.
Let D and D′ be two probability distributions. We write D ≡ D′ to denote the

equivalence of the distributions. Let X0, X1, . . . , Xn−1 ←$F be a series of random vari-
ables. We say that X0, X1, . . . , Xn−1 ∈ F are k-wise independent if Pr

[∧
i∈I Xi = xi

]
=∏

i∈I Pr [Xi = xi] for all I ⊆ [n] with |I| ≤ k. Moreover, a probability distribution D is



8 All-You-Can-Compute: Packed Secret Sharing for Combined Resilience

perfectly simulatable from a set S, if there exists a simulator SIM such that the output
of SIM (S) has the same distribution as D. More specifically, for any possible x in the
domain of D, it holds that Pr[SIM (S) = x] = Pr[D = x] which we denote by SIM (S) ≡ D.

2.1 Attacker Models
In this work, we consider two types of adversaries: passive and active adversaries. The
passive adversary learns the input-output behavior of the cryptographic implementation as
well as some intermediate values. The active adversary can inject faults into the internal
values (including the input and output values of the gadgets) of the implementation, which
can lead to unexpected computations and expose secret information. Furthermore, we
consider adaptive adversaries that can perform combined attacks and thus simultaneously
probe and fault the intermediate values of the implementation using information from
previous leakage.

Circuits. Computations are represented as circuit C with respect to a field F, i.e., we
consider a directed acyclic graph G where each node is labeled as input gate, output
gate, random gate, addition gate, multiplication gate, or constant gate. Moreover, when
considering a field F with characteristic p ̸= 2, we assume the existence of a power-of-p
gate that performs x 7→ xp. Picturing a circuit C as a directed acyclic graph, we start a
computation by assigning the inputs to the input gates. Once all the parents of a gate
have a value, we continue by calculating the value of the gate by applying the underlying
operation (e.g., multiplication or addition) to these values. We proceed gate by gate. Note
that random gates do not have parents and output a uniformly random element in F.

A circuit can output the symbol ⊥ /∈ F to denote that a computation aborts. We denote
the output distribution of a circuit C with inputs x1, x2, . . . by C (x1, x2, . . .). For a circuit
C with inputs x1, x2, . . . and (fixed) randomness R, the output is given by CR (x1, x2, . . .).

Compiler. A common way to prevent the above attacks is to use a compiler that can
transform a circuit C that may be vulnerable to attacks into a circuit C′ that can resist
such attacks. Note that the transformed circuits C′ are called fault- and leakage-resilient
circuits. When designing such a circuit C′, the main challenge is to prevent the leakage of
sensitive information through the intermediate values produced by C′. More precisely, the
transformed circuit C′ computes on encoded values that can be generated using Boolean
secret sharing, polynomial secret sharing, and other similar techniques. The specific choice
of the encoding schemes mainly depends on the types of attacks we aim to resist. Besides,
each gate in C is transformed into a gadget in C′. A gadget is essentially a sub-circuit with
the same functionality as the original gate in C, except that the inputs and outputs are
both encoded values. In concrete circuit constructions, we are mainly interested in how to
generate gadgets for addition and multiplication. In this work, we focus on constructing
gadgets using packed secret sharing (PSS) [FY92], which is very efficient and beneficial in
the scenario of parallel computations.

Passive Attacks. A passive t-probing adversary A can run the circuit C and arbitrarily
execute standard glitch-free probe on field elements 6 for up to |I| ≤ t intermediate wires
(wi)i∈I of C. Let b ←$ {0, 1} and let the adversary A choose two inputs, x0 and x1. We
say that a circuit C with input xb is perfectly secure against a t-probing adversary A if the
probability that the adversary A can distinguish whether the input xb is x0 or x1, equals
to 1

2 .

6Note that we consider the standard glitch-free t-probing model on field elements instead of the
glitch-extended t-probing model on bits presented in [FRSG22, FGM+23].
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Non-interference (NI) [BBD+15, BBD+16] is a useful notion to ensure perfect security.
Intuitively, NI guarantees that all information that an adversary A can obtain by t probes
of arbitrary intermediate values can also be obtained by t probes on the inputs. In order
to guarantee security, we need to choose a secret sharing scheme on the secret inputs, such
that any subset of t shares does not reveal any information about the secret inputs.

Definition 1 (NI [BBD+15, BBD+16]). A gadget G is t-non-interfering (t-NI) if for any
set of tint intermediate variables and any subset O of output indices with tint + |O| ≤ t,
there exists a subset of input indices I with |I| ≤ tint + |O| such that the distribution of
the tint intermediate variables and the output variables in O is perfectly simulatable with
inputs with indices from I.

As NI gadgets do not support composability [BBD+16], meaning that the composition
of two NI gadgets is not necessarily NI anymore, we consider a stronger version of non-
interference called SNI.

Definition 2 (SNI [BBD+16]). A circuit G is t-strong non-interfering (t-SNI) if for any
set of tint intermediate variables and any subset O of output indices with tint + |O| ≤ t,
there exists a subset of input indices I with |I| ≤ tint such that the distribution of the tint
intermediate variables and the output variables in O is perfectly simulatable with inputs
with indices from I.

Note that the difference between NI and SNI is that the set of probes is separated into
internal and output probes. This means that the SNI property requires that the number
of input shares on which the distribution of a given position set can depend is determined
by the number of internal positions present in that state. This separation enables the
composability of SNI gadgets. A detailed discussion is presented in [BBD+16].

Active Attacks. We mainly consider two types of fault sets: the set of wire independent
faults F ind where the wire with value x can be arbitrarily but independently faulted to a
value v, and the set of additive faults F+ := {ξ : ξ (x) = x+ a for all a ∈ F}. It is easy to
see that F+ ⊂ F ind. More formally, let w0, . . . wW −1 denote the wire indices of a circuit
CR. A fault attack T is defined as a tuple of functions T = (ξ0, . . . , ξW −1), where each
function ξi ∈ F , i ∈ [W ] describes how wire wi is faulted. During a computation, an active
adversary A with access to a set of faults F can change the wire value from xi ∈ F to
ξ (xi) := vi for ξ ∈ F .

The faulted circuit CR with inputs (x1, . . .) is denoted by T
[
CR (x1, . . . )

]
and the

number of faulted wires is denoted by |T | = e. We refer to the outputs of the unfaulted
circuit C by y ← CR (x1, . . . ) and the output of the faulted circuit CR′ (x1, . . . ) by
y′ ← T

[
CR′ (x1, . . . )

]
. A circuit CR is called ϵ-secure against e-fault adversaries if

Pr[y′ ∈ {y,⊥}] ≥ 1− ϵ for all A. Intuitively, ϵ-security means the injected faults can be
corrected or identified with probability p ≥ 1−ϵ. Seker et al. [SFES18] proposed a technique
called infective computation, which guarantees that the injected error is propagated during
computation and the result is an error state of the circuit C. This notion was enhanced as
fault-robustness by Berndt et al. [BEF+23]. Fault-robustness guarantees that the injected
faults lead to a detectable faulted output. So far, this notion has been mainly used for
Shamir’s secret sharing [Sha79]. In this work, we extend it to packed secret sharing [FY92].

Note that we call a value y ∈ Fn valid encoding for a specific encoding Enc : F→ Fn,
if there exists a number x ∈ F and some randomness r such that Enc (x; r) = y. Let sinput
denote the number of faults that are injected into the gadget inputs, and sint indicate the
faults that are injected during the computation of the gadget. Intuitively, fault-robustness
(cf. Def. 3) guarantees that for a total of |T | = sinput + sint faults, there exists t1 + t2 ≤ |T |
such that the effect on the gadget’s outputs is that either ≤ t1 outputs are deterministically
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affected or the outputs contain abnormal/error high-order coefficients of xd+1, . . . , xn−t2

which can be detected.

Definition 3 (e-fault-robust [BEF+23, Def. 3], [ABEO24, Def. 3]7 ). A gadget G with one
output sharing and two input sharings (with respect to the polynomial sharing J·K) is e-fault-
robust with respect to a fault set F , if for any valid input sharings (x0, . . . , xn−1) ∈ JxK and(
x′

0, . . . , x
′
n−1
)
∈ Jx′K, the output (y0, . . . , yn−1) ← G

(
(x0, . . . , xn−1) ,

(
x′

0, . . . , x
′
n−1
))

is
also valid. Further it holds for any fault vectors (v0, . . . , vn−1) ∈ JvK,

(
v′

0, . . . , v
′
n−1
)
∈ Jv′K

and any T ∈ A (F) with |T | ≤ e and (yi + wi + w′
i)i∈[n] ← T [G]

(
(xi + vi)i∈[n] , (x′

i + v′
i)i∈[n]

)
,

that there exists numbers t1 and t2 with t1 + t2 ≤ |T | such that
• weight((w0, . . . , wn−1)) ∈ [0, t1]∪[weight(v + v′)− t1,weight(v + v′) + t1] where v =

(v0, . . . , vn−1) and v′ =
(
v′

0, . . . , v
′
n−1
)
,

• and w′ =
(
w′

0, . . . , w
′
n−1
)

is the zero vector or produced by the following ran-
dom experiment: A polynomial pw′ ∈ F [x] is chosen such that the coefficients of
xd+1, xd+2, . . . , xn−t2 are drawn uniformly at random from F. Then, w′

i = pw′ (αi)
for some pairwise different points αi ∈ F \ {0}.

In the subsequent proof about combined resilience, we mainly consider additive faults
launched by non-adaptive adversaries. However, under the mild conditions of fault-
invariance (cf. Def. 7) and frSNI (cf. Def. 4) as required in [BEF+23, Corollary 2], we can
transform our gadget that is secure against additive faults F+ into the gadget that is
secure against the stronger wire-independent faults F ind launched by adaptive adversaries,
at the cost of obtaining a slightly weaker security notion. More details are explained in
Lemma 2.

Combined Attacks. We can combine passive and active adversaries as introduced by
Berndt et al. [BEF+23] to obtain a (t, e)-combined adversary A. This combined adversary
can simultaneously probe t wires wi and choose another e wires w′

i to fault. More specifically,
we define the security as follows: First, the (t, e)-combined adversary chooses two inputs x0
and x1 for the circuit CR. Then one input xb is chosen uniformly at random by b←$ {0, 1},
and the circuit CR is evaluated on input xb. Next, the adversary A can probe or fault
on wires of CR, before he is required to output a bit b′ ∈ {0, 1}. A wins if b = b′ with
probability greater than 1

2 + negl , i.e. if he is able to guess whether x0 or x1 has been
chosen as input. In more detail, let us denote the output of the original circuit by yb

and the output of the faulted circuit by y′
b. We say that circuit CR is ϵ-secure against

(t, e)-combined adversaries A if both Pr[b = b′] = 1
2 and Pr[yb′ ∈ {yb,⊥}] ≥ 1− ϵ hold.

We can securely compose (S)NI gadgets in the case of passive adversaries who can
only perform probing attacks as shown in [BBD+16]. However, an (S)NI gadget does not
necessarily remain (S)NI in the presence of faults, as demonstrated in [BEF+23]. For
instance, an adversary can insert faults that cancel out the randomness of a gadget. To
address this, Berndt et al. adapted the (S)NI property to ensure composability under
combined attacks.

Definition 4 (Fault-resilient (S)NI [BEF+23, Def. 5]). A gadget G is t-fault-resilient
(strong-) non-interfering (t-fr(S)NI) with respect to a fault set F if T [G] is t-(S)NI for any
fault attack T ∈ A (F).

Sometimes, it might be sufficient to consider a slightly weaker version of the frSNI
notion. We use a similar notion as before but with a bounded number of faults, and we
treat the faults as probes. More details on the difference between the notions are presented
in [BEF+23].

7Arnold et al. [ABEO24] generalized the definition of fault-robustness proposed by Berndt et
al. [BEF+23]. We also consider the generalized fault-robustness here.
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Definition 5 (Weak fault-resilient NI [BEF+23, Def. 6]). A gadget G is d-weak fault
resilient non-interfering (d-wfrNI) with respect to F if every set of d′ probes in T [G] can
be (perfectly) simulated with d′ + |T | shares of each input sharing for any fault attack
T ∈ A(F) with |T |+ d′ ≤ d.

Definition 6 (Weak fault-resilient SNI [BEF+23, Def. 7]). A gadget G is d weak fault
resilient non-interfering (d-wfrSNI) with respect to F if every set of d1 internal probes and
d2 output probes in T [G] can be (perfectly) simulated with d1 + ϵ1 shares of each input
sharing for any fault attack T ∈ A (F) with ϵ1 internal faults and ϵ2 output faults such
that d1 + d2 + ϵ1 + ϵ2 ≤ d.

Theorem 1 (Composition of frSNI [BEF+23, Thm. 1]). The composition of two d-frSNI
(or d-wfrSNI) gadgets with respect to F is d-frSNI (or d-wfrSNI) with respect to F if
F ⊆ F ind.

Berndt et al. [BEF+23] showed that a circuit C, which is independently proven to be
leakage- and fault resilient, is not secure against the combined attacks. To guarantee
combined security, Berndt et al. also introduced a notion called fault invariance, which
allows to push injected faults to the inputs or the outputs of the gadgets. Intuitively,
if the faults injected into the gadgets can also be obtained by faulting the inputs, then
sufficiently secret-shared inputs (i.e. considering a high enough number of shares n) can
guarantee that the combined adversary A learns nothing about the secret inputs. In other
words, fault-invariance ensures that the information obtained from a probe is independent
of any faults, as the internal values zi of a circuit C(x0, . . . , xn−1) depend only on the
internal randomness R and the inputs (x0, . . . , xn−1). Therefore, we can represent them
as functions zi = fR(x0, . . . , xn−1).

Definition 7 (Fault-invariance [BEF+23, Def. 8]). A circuit C(x0, . . . , xn−1) is fault-
invariant with respect to a fault set F if for any T ∈ A (F), any intermediate value f in
CR and the corresponding value f ′ in T [CR], there are ξ, ξ0, . . . , ξn−1 ∈ F such that it
holds

f ′R(x0, . . . , xn−1) = ξ(fR(ξ0(x0), . . . , ξn−1(xn−1)))

for any inputs (x0, . . . , xn−1) and randomness R.

To prove that a gadget is frSNI, it suffices to show that the gadget is fault-invariant
and SNI:

Lemma 1 ([BEF+23, Cor. 1]). If a gadget is d-NI (d-SNI) and fault-invariant with respect
to F ⊂ F ind, the gadget is d-frNI (frSNI, respectively) with respect to F .

Moreover, Berndt et al. showed a connection of d-fr(S)NI with respect to F+ and
d-wfr(S)NI with respect to F ind:

Lemma 2 ([BEF+23, Cor. 2]). If a gadget is d-fr(S)NI and fault-invariant with respect to
F+, it is adaptively d-wfr(S)NI with respect to F ind.

2.2 Packed Secret Sharing
The packed secret-sharing technique introduced by Franklin and Yung [FY92] is a general-
ization of the standard Shamir’s secret sharing scheme [Sha79]. In this section, we explain
step by step the differences between Shamir’s secret sharing and packed secret sharing to
obtain the notation and background we need for the following sections.

We begin by reconsidering Shamir’s secret sharing, where we want to share one secret,
say v0, into n shares F0, . . . , Fn−1 ∈ F. We can do this by sampling d values r1, . . . , rd

uniformly at random from the field F and constructing the polynomial with coefficients
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(v0, r1, . . . , rd), namely f (X) = v0 + r1X
1 + · · · + rdX

d. Now, our secret shares are
the evaluation of the polynomial at pairwise disjoint points u0, . . . , un−1 ∈ F \ {0}, i.e.
Fi = f (ui). We can represent this idea with the help of a Vandermonde matrix as follows.
Denote Van(d+1)×n (u0, . . . un) by U . In order to encode (or mask) a secret v0, we evaluate
our degree d polynomial f(X) with coefficients v′ = (v0, r1, . . . , rd) at n pairwise non-zero
disjoint points u0, . . . , un−1,

v′ · U = (f (u0) , . . . , f (un−1)) .

To recover all coefficients of our polynomial from d+1 distinct shares, we can use the inverse
matrix U−1 = Van−1

(d+1)×(d+1)(u0, . . . , ud) to compute v′ = (f (u0) , . . . , f (ud)) ·U−1. From
this representation, we already see that we can recover each element v′

j directly by
calculating

∑d
i=0 f (ui) · U−1

i,j . Consequently, the decoding (or unmasking) is well defined,
i.e., v0 =

∑d
i=0 f (ui) ·U−1

i,0 . Similarly, as described by Arnold et al. [ABEO24], we can put
two secrets, v0 and vd, into one polynomial. In this case, one represents the lowest and the
highest coefficient of the polynomial, respectively. Additionally, Arnold et al. [ABEO24]
mentioned that it is not possible to securely extend the scheme directly to k > 2 secrets
since this would reveal the secrets in some cases. In particular, they provide an example
demonstrating the insecurity of hiding the secrets in the coefficients other than the highest
and lowest coefficients. Instead, if we aim to consider not only one or two secrets but k
secrets in one encoding, we need to slightly adapt the masking and unmasking procedure.

In more detail, let v0, . . . , vk−1 be our secrets and rk, . . . , rd be the random val-
ues chosen independently and uniformly at random from F. We denote the vector
(v0, . . . , vk−1, rk, . . . , rd) by v.

As a first step, we construct a polynomial, f (X) =
∑d

i=0 fi ·Xi, such that the secrets
are embedded at certain points of this polynomial. Specifically, instead of embedding
one secret into f (0), we consider k secrets in f (u0) , . . . , f (uk−1), where u0, . . . , uk−1 are
pairwise disjoint support points. As in the “one dimensional” case of Shamir’s secret
sharing, we must also consider some random numbers rk, . . . , rd to fix the remaining
coefficients if k < d+ 1. Rather than inserting the values directly, we fix the rest of the
coefficients by choosing some more pairwise disjoint support points uk, . . . , ud such that
f (ui) = ri for i ∈ [k, . . . , d]. Analogous to the case of Shamir’s secret sharing, this can be
represented by

v · U−1 = f ,

where f = (f0, . . . , fd) and U−1 = Van−1
(d+1)×(d+1)(u0, . . . , ud).

In our second step, we insert more randomness. We can think of the following step
as evaluating the polynomial f (X) at random points x0, . . . , xn−1, which is disjoint from
u0, . . . , ud, to obtain n final shares. Considering a Vandermonde matrix with respect to
these pairwise disjoint points x0, . . . , xn−1, V = Van(d+1)×n(x0, . . . , xn−1), we receive our
shares F = (Fi)i∈[n] by calculating

(F0, . . . , Fn−1) = f · V.

Finally, we obtain the packed secret sharing scheme presented in [FY92].
To simplify the notation, we consider the masking of the values v as a matrix multipli-

cation with M = U−1 · V , i.e.,

mask (v) := F = v ·M.

We can unmask F similar to the reconstruction phase in Shamir’s secret sharing.
This is possible because, in both cases, the underlying polynomial is of degree d, which
allows the decoding of v using d+ 1 secret shares of F . Consequently, by setting V −1 =
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Van−1
(d+1)×(d+1)(x0, . . . , xd) we obtain the (d+ 1)× (d+ 1)-matrix M−1 = V −1 · U , which

enables us to unmask by calculating

unmask (F ) := (F0, . . . , Fd) ·M−1.

One can easily see, that correctness still holds, as

Fl =
d∑

i=0
fi · Vi,l =

d∑
i=0

 d∑
j=0

Fj · V −1
j,i

 · Vi,l =
d∑

j=0
Fj

d∑
i=0
·V −1

j,i · Vi,l = Fl,

since
∑d

i=0 V
−1

j,i · Vi,l = 0 ∀j ̸= l and
∑d

i=0 V
−1

j,i · Vi,l = 1 if j = l.
Note that both matrices M and M−1 can be pre-computed without knowing the vector

v. Thus, we can see the masking and unmasking of packed secret sharing as a matrix
multiplication, which is similar to the masking and unmasking process of Shamir’s secret
sharing. As before, we can unmask each element vj individually by computing the linear
combination of d+ 1 shares through

∑d
i=0 Fi ·M−1

i,j .
In order to guarantee the security of our scheme in the upcoming sections, we also need

to keep Lemma 3 in mind. More details on Lemma 3 can be found in [FY92].

Lemma 3 ([FY92]). For a random degree-d packed secret sharing of a vector v =
(v0, . . . , vk−1, rk, . . . , rd), any d− k + 1 shares are independent of the secret (v0, . . . , vk−1).

3 Linear Compiler
Before presenting a general compiler, the goal of this section is to provide a compiler
for affine computations. This approach helps us get familiar with the notation before
moving on to the more complex gadgets needed for the general compiler. Therefore, we
first present share-wise addition in Section 3.1, and share-wise multiplication in Section
3.2. In Section 3.3 we consider two different ways to generate zero-encodings and present a
general affine transformation gadget in Section 3.4. We conclude this section by describing
two methods to refresh shares in Section 3.5.

Recall that we are interested in using packed secret sharing [FY92] to construct leakage-
and fault-resilient gadgets. To achieve this, we take advantage of the error-detecting
capabilities of packed secret sharing. Specifically, unlike in Section 2.2, where only a
subset of d+ 1 shares are required to unmask the secret vector v, our approach requires
all n ≥ d+ e+ 1 shares during the computation and reconstruction, where d denotes the
degree of the polynomial and we aim to be secure against e faults and t probes, where
t < d+1−k and k denotes the number of embedded secrets. For simplicity, let n = d+e+1
denote the number of secret shares in the subsequent discussion. This is necessary due to
the potential of an active adversary to fault the gadget inputs or inject faults during the
computation. For further details regarding this extension, we refer to the Supplementary
Material A.1. Furthermore, we consistently use the same support points u0, . . . , ud for all
packed secret sharings to embed the secrets v = (v0, . . . , vk−1, rk, . . . , rd). This approach
guarantees that share-wise added (or multiplied) shares of two packed secret sharings
embed the added (or multiplied) secrets at the same support points as the input shares
[FY92]:

1. Linear Homomorphism: For all d ≥ k− 1 and v,v′ ∈ Fd, mask (v + v′) = mask (v) +
mask (v′).

2. Multiplicativity: For all d ≥ k− 1 and 2d < n, and for all v,v′ ∈ Fd, mask (v ∗ v′) =
mask (v)∗mask (v′), where ∗ denotes the share-wise multiplication operation between
two vectors.
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The correctness of the above properties follows directly from the underlying polynomials.
In addition, unary gates (gates with only one input wire), such as addition or multiplication
with a constant, can be handled easily since these operations are linear and can be computed
locally on the packed secret shares. Therefore, we focus on binary gates, such as addition
and multiplication gates that take two inputs.

3.1 Share-Wise Addition
Gadget SWAdd (cf. Alg. 1) computes a share-wise addition such that the output (Qi)i∈[n]
represents the sum of v and v′. The correctness of the gadget immediately follows from
the linear homomorphism property of packed secret sharing. Besides, the output (Qi)i∈[n]
remains a degree-d polynomial since the sum of two degree-d polynomials results in a
polynomial of degree ≤ d. Next, we analyze the security of the generalized affine gadgets.

Lemma 4 ([BEF+23, Thm. 6]). Share-wise affine gadgets are (d+ 1− k)-frNI with respect
to F+ (or wfrNI with respect to F ind) and e-fault-robust with respect to F ind.

Proof. Fault-robustness with respect to wire independent faults directly follows from
Definition 3, as t1 inserted faults only deterministically affect t1 outputs.

To prove the frNI property, it is sufficient to show that our share-wise affine gadgets are
NI and fault-invariant, due to Lemma 1. Moreover, due to Lemma 2 NI and fault-invariance
of the gadget directly implies wfrNI with respect to F ind. It remains to prove that a
share-wise affine gadget is NI and fault-invariant.

Similar to the argument presented in [BEF+23, Thm. 6], the NI property holds because
the gadget performs share-wise operations and thus, all output values solely depend on
input shares with the same index. Choosing packed secret sharing instead of Shamir’s
secret sharing does not affect this fact. For example, considering share-wise addition,
Qi ← Fi +Gi only depends on the i-th share Fi and Gi for all i ∈ [n]. Since each probe
requires only one share of each input sharing, t probes can be simulated by at most t shares
of each input. Consequently, our share-wise gadgets are t-NI when using a polynomial
of degree d ≥ t + 1. However, for privacy reasons, we only consider t ≤ d + 1 − k since
exceeding this threshold would reveal information about the shares, given that our shares
are only (d+ 1− k)-independent (cf. Lem. 3).

Furthermore, fault-invariance directly follows from the fact that share-wise addition is a
linear homomorphism, and addition satisfies associativity. An additive fault ξ ∈ F+ adds a
constant value a on a wire. Due to linearity, this addition of a can be moved to the output.
Specifically, for Qi ← Fi +Gi it holds that (Fi +Gi) + a = Fi + (Gi + a) = (Fi + a) +Gi.
Note that in the first term, the fault is moved to the output as ξ(Qi) = Qi + a. In the
second and third terms, the fault is moved to the two inputs Gi and Fi as ξ(Gi) and ξ(Fi),
respectively. This concludes the proof.

Algorithm 1 SWAdd for n = d+ e+ 1, and k ≤ d
Input : Degree-d shares of v = (v0, . . . , vd) as (Fi)i∈[n] and degree-d shares of v′ =

(v′
0, . . . , v

′
d) as (Gi)i∈[n]

Output : Degree-d shares of v + v′ = (v0 + v′
0, . . . , vd + v′

d) as (Qi)i∈[n]

1 for i ∈ [n] do
2 Qi ← Fi +Gi

3 return (Qi)i∈[n]
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3.2 Share-Wise Multiplication
Multiplication is a non-linear operation and one of the most complex gadgets in our
scheme. It uses the multiplicative property of packed secret sharing, and we can use the
share-wise multiplication gadget SWMult [BEF+23, Alg. 2] to compute the product of
two secret vectors v, v′, and get v ∗ v′ = (vi · v′

i)i∈[d]. However, this process increases the
degree of the resulting underlying polynomial q (X) from d to 2d. Hence, to guarantee the
correctness of the multiplication, we need to reduce the degree of q (X) to d before the next
multiplication. To the best of our knowledge, there are two types of degree-reduction. The
first type of degree reduction technique (we call it BGW-based) reduces the polynomial’s
degree after the multiplication, which requires at least 2d + 1 shares. In contrast, the
second type (we call it LaOla-based) reduces the degree before the multiplication, which
requires a smaller number of shares but may increase the overall computational complexity
for non-linear operations. We compare and discuss the details of these degree reduction
techniques in Section 4.

Algorithm 2 SWMult for n = d+ e+ 1
Input : Degree-d shares of v = (v0, . . . , vd) as (Fi)i∈[n] and degree-d shares of v′ =

(v′
0, . . . , v

′
d) as (Gi)i∈[n]

Output : Degree-2d shares of v · v′ = (v0 · v′
0, . . . , vd · v′

d) as (Qi)i∈[n]

1 for i ∈ [n] do
2 Qi ← Fi ·Gi

3 return (Qi)i∈[n]

3.3 Zero-Encoding Gadgets
Now, we present two different methods to re-randomize shares while maintaining their
functionality. We can do so by generating encodings of zeros, which can be share-wise
added to shares (Fi)i∈[n] without changing the embedded secret. The first gadget, ZEncd

n,
uses a straightforward approach to encode zeros. The second gadget, sZEncd

n, is needed
to guarantee security for gadgets presented in Section 4.

ZEncd
n Gadget. We generate a zero encoding by masking with respect to the “secret”

consisting of k zeros 00, . . . , 0k−1. Specifically, to generate a sharing (gi)i∈[n], we first
construct a vector vzero = (00, . . . , 0k−1, rk, . . . , rd), where (rk, . . . , rd) ←$Fd+1−k are
chosen uniformly at random. Let U−1 denote Van−1

(d+1)×(d+1)(u0, . . . , ud) and V denote
Van(d+1)×n(x0, . . . , xn−1). Next, we compute

(g0, . . . , gn−1) = vzero ·M, (1)

where M denotes the matrix multiplication result of U−1 · V . Note that the above
matrix multiplication vzero ·M has computational complexity O (nd). We can reduce the
complexity to O (n · (d+ 1− k)) based on the following observation: since vzero contains k
zeros, we can omit the multiplication of the zeros in vzero with the elements in matrix M
by removing the first k zeros from vzero and first k rows from M . Due to this observation,
the correctness of our improved construction still holds. ZEncd

n (cf. Alg. 3) uses packed
secret sharing to generate a sharing of zeros. However, the refresh gadget instantiated
with ZEncd

n (cf. Alg. 3) does not satisfy SNI. For example, Berndt et al. provided a
counterexample in [BEF+23, Appendix B.5], which can be easily adapted to packed secret
sharing.
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Algorithm 3 ZEncd
n for n = d+ e+ 1 and k ≤ d

Output : Randomized sharing (gi)i∈[n] of zeros vzero = (00, . . . , 0k−1, rk, . . . , rd).

1 initialize (gi)i∈[n]
2 (rk, . . . , rd) ←$Fd+1−k

3 for i ∈ [n] do
4 for j ∈ {k, . . . , d} do
5 gi ← gi ⊕ rjMj,i

6 return (gi)i∈[n]

sZEncd
n Gadget. Based on ZEncd

n (cf. Alg. 3), we construct a gadget sZEncd
n (cf. Alg. 4)

that basically sums d+ 1− k different zero encodings generated by ZEncd
n and ensures

the Refresh (cf. Alg. 6) to be SNI. The output (yi)i∈[n] of sZEncd
n is guaranteed to be a

zero encoding, since it is the sum of the zero encodings generated by ZEncd
n. Note that we

improve the complexity of sZEncd
n from nd2 to n · (d+ 1− k)2 by changing the number

of the for loops (on line 2 of Alg. 4) from d (as in [BEF+23, Algo. 4]) to d+ 1− k. Before
proving that our sZEncd

n can achieve SNI refreshing, we first prove the probing security of
sZEncd

n in Lemma 5.

Lemma 5 (Probing resilience of sZEncd
n [BEF+23, Lem. 3]). For any set P with

d′ ≤ d+ 1− k probes, for (ei)i∈[n] ← sZEncd
n there is a subset A ⊂ [n] with |A| = n− d′

such that it holds
1. the values (ei)i∈A are (d+ 1− k)− d′-wise independent, as well as independent from

P and (ei)i∈[n]\A,
2. P can be perfectly simulated with (ei)i∈[n]\A.

Proof. The argument is similar to the one provided in Lemma 3 of [BEF+23]. Let us
consider the possible probes of P :

• Group K is defined as K =
⋃

l∈[n] Kl, where Kl consists of the internal probes(
gl

i

)
i∈[n] ← ZEncd

n or
(
gl

i

)
i∈[n].

• Group J consists of all probes in the set J =
⋃

i∈[n] Ji, with Ji = {y(0)
i , . . . , y

(d−k)
i },

where y(j)
i =

∑j
k=0

(
gj

i

)
i∈[n]

.

Next, we simulate all probes in P perfectly as follows. Note that P = K̃ ∪ J̃ for K̃ ⊂ K
and J̃ ⊂ J .

If one value in Ji is probed, we simulate all elements of Ji
8. Moreover, we assume

that for any probe in Kl, all values
(
gl

i

)
i∈[n] are leaked. Note that we simulate ZEncd

n

by choosing all rk, . . . , rd uniformly at random and following the algorithm to calculate(
gl

i

)
i∈[n]. We still have (d+ 1− k) − |K̃| elements

(
gl

i

)
i∈[n] that are not leaked and

(d+ 1− k)- wise independent and independent of K̃. Now, we need to simulate the probes
in J̃ . If the corresponding

(
gl

i

)
i∈[n] are already simulated due to K̃, we consider these

values. Otherwise, we choose
(
gl

i

)
i∈[n] uniformly random, since the probe threshold is

(d+ 1− k) and elements
(
gl

i

)
i∈[n] are (d+ 1− k)-wise independent. The values that are

not fixed in K̃ are added to yi and thus sum up to an output that is (d+ 1− k)− |C|-wise
independent, where |C| is the number of probes in J̃ . We obtain |C| ≤ d′.

8For simplicity, we use an upper-bound estimate here. The high-level idea is that we simulate more
probes than the adversary can probe.
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Algorithm 4 sZEncd
n for n = d+ e+ 1 and k ≤ d

Output : Randomized sharing of zeros (yi)i∈[n].

1 initialize (yi)i∈[n]
2 for j ∈ [d+ 1− k] do
3 (gi)i∈[n] ← ZEncd

n(cf. Alg. 3)
4 (yi)i∈[n] ← (yi)i∈[n] ⊕ (gi)i∈[n]
5 return (yi)i∈[n]

3.4 (φ0, . . . , φd)-Transformation Gadget

In this section, we present a generic gadget construction for performing various linear
transformations, as illustrated in GadgetLT (cf. Alg. 5 and Tab. 4). To enhance the
generality of the linear transformation gadget GadgetLT, we allow it to accept m different
groups of secret sharings

(
F

(0)
i

)
i∈[n]

, . . . ,
(
F

(m−1)
i

)
i∈[n]

as inputs, merge them as needed
using the function ℓφ0,...,φd

i,j , and obtain one secret sharing (Hi)i∈[n] as output. Table 4
provides a selection of useful examples for choosing ℓφ0,...,φd

i,j for different operations.
To ensure compatibility of our construction with AES, we introduce gadgets to permute

and recombine the underlying secrets. Both operations can be realized using our linear
transformation gadget GadgetLT. We consider an arbitrary permutation function π :
{0, 1, . . . , d} → {0, 1, . . . , d}, the Permutation gadget takes a secret sharing (Fi)i∈[n] which
correspond to secrets v0, . . . , vd, and outputs a secret sharing (F ′

i )i∈[n] which correspond
to re-ordered secrets, vπ(0), vπ(1), . . . , vπ(d).

The recombination operation can be seen as a generalization of the permutation
operation. Let πR : [d + 1] → I × J be an arbitrary function, with I = {i|i ∈ [d +
1]}, such that |I| = d + 1 and J = {j|j ∈ [m]}. The Recombination gadget takes m
sharings

(
F

(0)
i

)
i∈[n]

, . . . ,
(
F

(m−1)
i

)
i∈[n]

as inputs and allows to construct a secret sharing
of arbitrary recombination of the underlying secrets. Specifically, the recombination outputs
a sharing corresponding to the secrets ṽ0, . . . , ṽd, where ṽl = vπR(l) = vi,j = v

(j)
i denotes the

i-th secret vector of the j-th input sharing for every l ∈ [d]. We believe such operation to be
useful when developing other parallelizing techniques, such as paralleling the evaluation of
multiple gates of the same types, as explored by Goyal et al. [GPS21, GPS22] for designing
MPC protocols. Additionally, our combined resilient BGW-based multiplication gadget
MultBGW (cf. Sec. 4.1), which is adapted from the multiplication algorithm (together with
the degree reduction) proposed by Franklin and Yung [FY92] can be realized using our
linear transformation gadget GadgetLT with corresponding function ℓφ0,...,φd

i,j and matrix
λ(DegRed). Since the secret permutation gadget is essential in the AES process, we will
explain the generic gadget GadgetLT (cf. Alg. 5) by illustrating its use for permutation. In
the following section, we explain step-by-step how to construct function ℓφ0,...,φd (·) for
gadget Permutation such that it satisfies combined resilience.

Permutation Gadget Recall that we can permute a vector v = (v0, . . . , vd) and obtain a
permuted vector v′ by multiplying v with a (d+ 1)× (d+ 1) permutation matrix Mv→v′

through v′ = v ·Mv→v′ . Next, we explain how to realize this permutation operation
using the secret shares (Fi)i∈[n] of v. The goal is to output the secret shares (F ′

i )i∈[n] of
v′. Recall the fundamental properties of packed secret sharing introduced in [FY92]. Let
U−1 denote Van−1

(d+1)×(d+1)(u0, . . . ud) and V denote Van−1
(d+1)×n(x0, . . . xn−1). Namely, we
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generate secret shares F = (F0, . . . , Fn−1) of v through the following step:

F = v ·Mv→F , (2)

where Mv→F = U−1 · V . As discussed in Supplementary Material A.1, there also exists a
matrix MF →v such that we can reconstruct secrets through v = F ·MF →v. Additionally,
we can generate secret shares F ′ =

(
F ′

0, . . . , F
′
n−1
)

of the permuted v′ using Mv→v′

through the following step:

F ′ = v ·Mv→v′ · U−1 · V (3)
= F ·MF →v ·Mv→v′ ·Mv→F (4)
= F ·MF →F ′ , (5)

where the details on constructing matrix MF →F ′ are provided in Supplementary Mate-
rial A.4. In a nutshell, the multiplication of F and MF →F ′ is equivalent to the following
processes: reconstructing the secret v, generating the permutation v′ of the recovered v,
and re-sharing of v′ as F ′. For simplicity, we denote matrix MF →F ′ by M in the following
discussion.

It is easy to verify that by setting λ(P)
j,i = Mi,j , GadgetLT outputs (F ′

i )[n] that encode
secrets v′, when given inputs (Fi)[n] that encodes secrets v. Similarly, by constructing
specific matrices M for the function ℓφ0,...,φd

i,j , GadgetLT can realize various linear trans-
formation operations, such as recombination, multiplication with degree reduction, and
generation of zero-encodings. Furthermore, to realize combined resilience, we need to set
λ

(P)
j,i = Mi,j + Ei,j , where λi,j are the elements of the matrix Van(d+1)×n (x0, . . . , xn−1)

and the error propagation (or preserving) term Ei,j [SFES18] is defined as follows:

Ei,j =
{
λi,n−j−1 if 0 ≤ j < e

0 if e ≤ j ≤ n− 1
. (6)

Intuitively, the error propagation term Ei,j would preserve the error coefficients (i.e., the
coefficients of the degree > d terms in the polynomial corresponding to faulty shares) such
that the faulted inputs (Fi + ∆i)i∈[n] can be detected.

Next, we prove the correctness and combined resilience property of our generic gadget
GadgetLT.

Algorithm 5 GadgetLT for n = d+ e+ 1, d ≤ k, and m ≤ k
Input : m groups of degree-d shares of secret vectors v(0), . . . ,v(m−1) as(

F
(0)
i

)
i∈[n]

, . . . ,
(
F

(m−1)
i

)
i∈[n]

Output : Degree-d shares of arbitrary chosen secrets ṽ =
(
v

(0)
l0
, . . . , v

(d)
ld

)
as (Hi)i∈[n],

where (l0, . . . , ld) ∈ {0, . . . ,m− 1}d+1 and the chosen secrets can be computed
through v

(0)
l0

= φ0

(
v

(0)
0 , . . . , v

(m−1)
0

)
, . . . , v

(d)
ld

= φd

(
v

(0)
d , . . . , v

(m−1)
d

)
.

1 initialize (Hi)i∈[n]
2 for i ∈ [n] do
3

(
H̃i,0, . . . , H̃i,n−1

)
← ZEncd

n(cf. Alg. 3)
4 for j ∈ [n] do
5 H̃i,j ← H̃i,j + ℓφ0,...,φd

i,j

(
F

(0)
i , . . . , F

(m−1)
i

)
6 Hj ← Hj + H̃i,j

7 return (Hi)i∈[n]
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Table 4: Instantiations of different functions ℓφ0,...,φd

i,j in Algorithm 5. The input sharings
are F (0)

i , . . . , F
(m−1)
i that embed the secret vectors v(0), . . . ,v(m−1). Note that it is possible

that function ℓφ0,...,φd

i,j

(
F

(0)
i , . . . , F

(m−1)
i

)
only uses one or two inputs, instead of m inputs.

The details about how to construct the constant terms λ(P)
j,i , λ(P)

j+ln,i, λ
(R)
j+ln,i, for different

operations are provided in Supplementary Material A.
Gadget ℓφ0,...,φd

i,j

(
F

(0)
i , . . . , F

(m−1)
i

)
Functionality

RefreshLT Ii,j · Fi Re-randomizing the encoding of v

Permutation λ
(P)
j,i · Fi vπ(0), vπ(1), . . . , vπ(d)

Recombination
∑m−1

l=0 λ
(R)
j+ln,i · F

(l)
i ṽ0, . . . , ṽm−1, where ṽl = vπr(l) = v

(j)
i , j ∈ [m] for i ∈ [d+ 1]

MultBGW
9 λ

(DegRed)
j,i · F (0)

i · F (1)
i

Element-wise multiplying the secrets in v(0), v(1)

to get v(0) ∗ v(1) =
(
v

(0)
0 · v(1)

0 , . . . , v
(0)
d · v(1)

d

)
and reducing the degree of output shares

Lemma 6. Algorithm 5 is correct for all instantiations of ℓφ0,...,φd

i,j (·, . . . , ·) shown in
Table 4. When considering MultBGW, it is necessary to have n > 2d shares and polynomials
of degree d.

Proof (sketch). We aim to show that the functionality as denoted in Table 4 is correct
when inserting ℓφ0,...,φd

i,j as specified in Table 4 into Algorithm 5. The core idea for the
proof is the following observation: For one specific j, over the iteration of i, we obtain

Hj =
n−1∑
i=0

ℓφ0,...,φd

i,j

(
F

(0)
i , . . . ,F(m−1)

i

)
+
(

0, . . . , 0,
n−1∑
i=0

ri,k, . . . ,

n−1∑
i=0

ri,(n−1)

)
·Mj ,

where Mj denotes the j-th column of M . To prove correctness, we need to focus on the first
term of this equation, as the latter term is the j-th share of the sum of n zero encodings.
Supplementary Material A details how to carefully choose the elements ℓφ0,...,φd

i,j . Note that
n > 2d shares are required in case we consider MultBGW, as the share-wise multiplication
increases the degree of the polynomial from d to 2d. For further information, we refer to
Lemma 16 in the supplementary material.

We can prove Algorithm 5 to be SNI and fault-invariant with respect to F+ as follows.

Lemma 7. The linear transformation gadget, Algorithm 5, is t-SNI.

Proof (sketch). Considering the linear transformation gadget with respect to two inputs,
the SNI property can be shown similarly to [ABEO24, Lem. 8], since we only needed to
adapted the public parameters, which does not change the proof. However, as our linear
transformation gadget considers more inputs than the (ψ0, ψ1)-gadget presented by Arnold
et al., we have included a detailed proof of the SNI property in the supplementary material
(cf. Supp. B).

Lemma 8. All gadgets introduced in Table 4 are fault invariant with respect to F+.

Proof. Since the fault set F+ consists of additive faults, all linear and affine opera-
tions are fault invariant. The only non-affine operation in Algorithm 5 can appear in
ℓφ0,...,φd

i,j

(
F

(0)
i , . . . , F

(m−1)
i

)
. However, in all instances presented in Table 4, this is the

only non-linear operation. Thus, all faults before the operation of ℓφ0,...,φd

i,j can be moved
to the gadget’s input, and all faults after the operation of ℓφ0,...,φd

i,j can be moved to the
gadget’s output as in [BEF+23, ABEO24].

9We used a simplified version of the degree reduction from [FY92] that requires degree-d (instead of
degree-2d) polynomials to generate zero encodings for secret re-sharing.
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Moreover, we can show that our linear transformation gadget (cf. Alg. 5) instantiated
with respect to Table 4 satisfies fault-robustness.

Lemma 9. The linear transformation gadgets presented in Table 4 are e- fault robust with
respect to F+.

Proof. The first two gadgets of Table 4, RefreshLT and Permutation consider one input
sharing each. In comparison to [ABEO24, Table 5], we needed to change the public
parameters, as well as the coefficients ℓφ0,φ1

i,j to maintain correctness. However, this does
not impact the proof and we can proceed similarly to [ABEO24, Lem. 19]. Furthermore,
the gadget MultBGW takes two input sharings into account. But similar to the previous
case, we changed the public parameters in comparison to Arnold et al. and the coefficients
ℓφ0,φ1

i,j , which does not affect the proof. Thus, we can proceed similarly to [ABEO24, Lem.
18]. It is left to show that Recombination fulfills fault-robustness as well. Recall that
every change to an output of ZEncd

n introduced by s internal faults can be achieved by s
direct faults on the output. Moreover, each fault injected in the Recombination gadget
can be transformed into an output fault since the gadget only uses share-wise addition
and share-wise multiplication with public constants. Thus, e-fault robustness follows from
the security of the underlying encoding.

3.5 Refresh Gadget
RefreshLT Gadget. As shown in Table 4, the GadgetLT (cf. Alg. 5) can also be used
to refresh or re-randomize shares. In more detail, we can input sharings (Fi)i∈[n] and
consider the identity matrix as the transformation matrix. This procedure involves adding
n zero encodings to (Fi)i∈[n], which does not change its underlying secret v, but only
re-randomizes the sharing. Note that correctness holds true since we add each element Fi

only once to the corresponding Hi, and otherwise, we solely add the corresponding i-th
share of the n zero encodings. The RefreshLT is SNI, fault invariant and σ-fault robust,
details are presented in Lemma 7, Lemma 8 and Lemma 9, respectively.

Optimized Refresh Gadget. We can perform a refresh of our shares using the linear
transformation gadget GadgetLT presented previously. However, this process requires n
zero encodings ZEncd

n (cf. line 2 − 3 in Alg. 5). Berndt et al. [BEF+23] introduced a
stronger Refresh gadget that is not only SNI, but also region probing secure, requiring
only d zero encodings. The region probing model introduced in [ISW03], offers stronger
security than the notions of NI or SNI. Specifically, the region probing model extends
the threshold probing model by applying the threshold of probes, t, to each gadget (or
region) in the circuit, meaning that the total number of allowed probes increases with the
number of gadgets. In this section, we adapt the Refresh gadget from [BEF+23], which
was originally designed for Shamir’s secret sharing [Sha79], to packed secret sharing and
prove that the adapted gadget maintains the desired security properties using only d+1−k
zero encodings.

We construct the SNI refreshing gadget Refresh (cf. Alg. 6) using sZEncd
n (cf. Alg. 4).

First, the gadget generates a zero encoding (sZEncd
n), then it share-wise adds the zero

encoding with the input encoding.

Lemma 10 ([BEF+23, adapted Thm. 17]). The Refresh gadget is (d+ 1− k)-frSNI, w.r.t
F+.

Proof. We show that Refresh (cf. Alg. 6) is SNI and fault-invariant (cf. Def. 7). Let J
be the set of output probes in (Qi)i∈[n] and P be the internal and output probes in
(yi)i∈[n] ← sZEncd

n. By Lemma 5, we know that for any set of probes P , there is a
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subset A ⊂ [n] with |A| = n − |P | such that the values (yi)i∈[n] are (d + 1 − k) − |P |-
wise independent, independent from P and (yi)i∈[n] and P can be perfectly simulated
by (yi)i∈[n]. Thus, we can choose (yi)i∈[n]\A according to the set P . By Lemma 5, we
can simulate P and (yi)i∈[n]\A, which does not change the distribution of (yi)i∈A. The
simulator obtains all the input shares of (Fi)i∈[n]\A, i.e. S =

⋃
i∈[n]\A(Fi). We can simulate

the output probes as follows:
• For any probe in (Qi)i∈A: choose Qi uniformly at random. Note that the values

(yi)i∈A are (d+1−k)−|P | wise independent by Lemma 5. Since the probe threshold
is (d + 1 − k) we can consider these values as uniform random for the simulation.
As (yi)i∈A re-randomizes the input value Fi, the Qi = Fi + yi are indistinguishable
from uniformly random.

• For any probe in (Qi)i∈[n]\A: As already mentioned, the simulator can simulate
(yi)i∈[n]\A. Moreover, Fi ∈ S by construction. Thus, the simulator can compute
Qi = Fi + yi.

Since S =
⋃

i∈[n]\A(Fi), we know that |S| = |[n] \ A| = n − (n − |P |) = |P |. Thus, the
simulator requires |P | input values, which is exactly the number of inner probes.

It is left to show that Algorithm 6 is fault-invariant. This follows directly by the fact
that Refresh consists only of sZEncd

n together with a share-wise addition. For sZEncd
n we

show in the supplementary material (Lem. 22) that every s internal faults can be pushed
to s direct faults on the output. More details can be found in the Supplementary Material
C.

Considering the work of Berndt et al., we even obtain region probing security [BEF+23,
Thm. 15]. Consequently, this security property immediately implies security against more
advanced attacks such as horizontal attacks.

Algorithm 6 Refresh for n = d+ e+ 1 and k ≤ d
Input : Degree-d shares of v = (v0, . . . , vd) as (Fi)i∈[n]
Output : A randomized degree-d shares of v as (F ′

i )i∈[n]

1 (yi)i∈[n] ← sZEncd
n

2 (Qi)i∈[n] ← (Fi)i∈[n] + (yi)i∈[n]
3 return (Qi)i∈[n]

4 Generic Compiler
We have introduced our linear compiler, realizing masked operations such as affine opera-
tions, general linear transformations, and re-randomization. To build a generic compiler,
it remains to construct a multiplication gadget together with the degree reduction. In
this section, we focus on constructing combined resilient gadgets for the multiplication
operation using packed secret sharing [FY92]. As discussed in Section 3.2, share-wise
multiplication of two degree-d polynomial sharings results in doubling the degree of out-
put shares to 2d. To guarantee the correctness of the computation, we need n > 2d
shares and must reduce the degree of the output shares from 2d back to d before the
next multiplication operation. A classical solution for degree reduction was proposed by
Ben-Or-Goldwasser-Wigderson [BGW88], which reduces the degree of output shares from
2d to d after the share-wise multiplication to prevent the degree from growing exponentially
with the number of multiplication gadgets. In this work, we call multiplication gadgets
using this degree reduction technique BGW-based multiplication. Recently, Berndt et
al. [BEF+23] proposed another type of degree reduction technique that reduces the degree
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of the polynomial sharing from d to d
2 before the share-wise multiplication. We call the

multiplication using this type of degree reduction the LaOla-based multiplication.
We begin by discussing a special type of degree reduction for packed secret sharing

proposed by Damgård et al. [DIK10] originally aimed to reduce the communication and
computational complexity of multi-party computation [Yao86, GMW87]. Then, we discuss
the challenges identified by Grosso et al. [GSF14] that deploy this degree reduction [DIK10]
and explain why it is vulnerable to fault attacks. Next, we revise one variant of the
BGW-based Multiplication from [FY92], which is designed for packed secret sharing, and
demonstrate how to adapt it to be combined resilient. Finally, we re-examined the
original LaOla-based multiplication [BEF+23] designed for Shamir’s secret sharing and
demonstrated how to adapt it to be compatible with packed secret sharing.

Degree Reduction from [DIK10]. A widely used degree-reduction technique of packed
secret sharing for achieving perfectly secure MPC protocols [GPS21, GPS22] was proposed
by Damgård et al. [DIK10]. Their core idea can be described as follows. Suppose we
have n parties (Pi)i∈[n] involved in the computation. Before each party Pi receiving
the input shares Fi and Gi for share-wise multiplication, the parties generated a pair of
correlated shares (Ri)i∈[n] and (R′

i)i∈[n], which are generated using degree-d and degree-2d
polynomials encoding the same set of publicly unknown randomness r0, . . . , rd. After
receiving the input shares, each party Pi first share-wise multiplies these two degree-d input
shares and obtains a degree-2d polynomial sharing Fi ·Gi as a result. Then, the degree-2d
multiplication result is blinded by each party Pi locally by adding it with the degree-2d
shares R′

i. Next, each party Pi sends the blinded result Fi · Gi + R′
i to one designated

party who reconstructs the blinded results in plaintext and sends (or broadcasts) it back to
each party. Finally, each party removes the randomness r0, . . . , rd in the received plaintext
result by subtracting it with the degree-d shares Ri. However, this degree reduction
technique faces challenges when being adapted to environments susceptible to side-channel
attacks, particularly to active attacks (cf. Sec. 2.1). The vulnerability arises during the
reconstruction of blinded values, where an active adversary could inject faults before (or
during) the reconstruction of the blinded result. Such an injected fault cannot be detected
using Shamir’s secret sharing [Sha79] (or packed secret sharing [FY92]) and could further
propagate through the re-sending (or broadcasting) step, affecting more than one output
share and breaking the fault-robustness requirement (cf. Def. 3).

4.1 BGW-Based Multiplication
A classical solution for the degree reduction was proposed by Ben-Or-Goldwasser-Wigderson
[BGW88], which reduces the degree from 2d to d after the share-wise multiplication to
prevent the degree from growing exponentially with the number of multiplications. More
specifically, the BGW reduction technique first takes degree-2d polynomial sharings as
input and randomizes it with degree-2d zero encodings, in which the degree-2d input shares
are re-shared among all the parties. Then, the randomized (or re-shared) degree-2d input
shares are multiplied by a pre-computed constant matrix, which is equivalent to a secret
reconstruction and re-sharing process. Importantly, after this re-sharing step, the outputs
are degree-d shares that embed the same secrets as the original degree-2d input shares.

Note that the original BGW degree reduction [BGW88] is designed for Shamir’s secret
sharing and requires the generation of degree-2d zero encodings. Later, Gennaro et
al. [GRR98] simplified this degree reduction technique by asking each party to re-share
their degree-2d shares using a random degree-d polynomial (instead of using degree-2d
zero encodings). Based on the original BGW degree reduction [BGW88], Franklin and
Yung [FY92] proposed a degree reduction technique for packed secret sharing that (still)
requires the generation of degree-2d zero encodings. However, we can also improve their
constructions for packed secret sharing using the same ideas as Gennaro et al. [GRR98].
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Degree Reduction from [FY92]. Franklin and Yung [FY92] proposed a degree reduction
approach for the multiplication operation of packed secret sharing, which requires n = 2d+1
shares and can be used in multi-party computation [Yao86, GMW87]. In the following
discussion, we use uppercase letters Fi and Gi to represent the secret shares and lowercase
letters f and g to represent the corresponding polynomials. In the MPC setting, each party
Pi, given the shares Fi and Gi, performs the share-wise multiplication Fi ·Gi. The result
of the multiplication Fi ·Gi corresponds to the degree-2d polynomial f (X) · g (X). Next,
each party Pi generates a random degree-d polynomial R(i) (X) that encodes Fi · Gi at
support point ui and values of zero at other support points {u0, . . . , ui−1, ui+1, . . .}. Then,
each party Pi generates shares

(
R

(i)
j

)
j∈[n]

by evaluating polynomial r(i) (X) at support

points {x0, . . . , xn−1} and re-shares their Fi ·Gi by sending R(i)
j to other parties Pj for

j ∈ [n] \ i. Now, each party Pi has received shares of all the share-wise multiplication
results of F0 · G0, . . . , Fn−1 · Gn−1 from other parties. Finally, the parties reduce the
degree-2d share vector F ∗ G = (Fi ·Gi)i∈[n] and get degree-d share vector F̃ ∗ G̃ by
computing F̃ ∗ G̃ = (F ∗G) ·MF ∗G→F̃ ∗G̃ in a MPC manner, i.e., each party Pi uses their
received shares R(j)

i encoding Fj ·Gj for j ∈ [n] \ i and the locally computed R
(i)
i as the

inputs for the MPC protocol to compute the multiplication with a specially constructed
matrix MF ∗G→F̃ ∗G̃. Essentially, the secrets embedded in (Fi ·Gi)i∈[n] are reconstructed
and re-shared as degree-d shares through the multiplication operation with the matrix
MF ∗G→F̃ ∗G̃. The share-wise product F̃ ∗ G̃ corresponding to a degree-d polynomial
f̃ (X) · g̃ (X) that embeds the same secrets as the degree-2d polynomial f (X) · g (X)
at the same support points. The details of the construction of the matrix MF ∗G→F̃ ∗G̃

are presented in Suplementary Material A.3. Note that we can directly use this degree
reduction technique to construct gadgets for multiplication operations, and the gadgets
can be adapted (by adding the error propagation term as in Section 3.4) and proved to be
combined resilient.

BGW-Based Compiler for PSS. We can use our linear transformation gadget GadgetLT
(cf. Alg. 5), refresh gadget Refresh (cf. Alg. 6), share-wise addition SWAdd (cf. Alg. 1)
and the share-wise multiplication gadget SWMult (cf. Alg. 2) to build a circuit compiler
(we name it BGW-based PSS compiler) that is combined secure against t ≤ d + 1 − k
probes, where d denotes the degree of our polynomial and k the number of embedded
secrets, and e additive faults F+ using n = 2d+ e+ 1 shares. It can be easily extended to
resist wire-independent faults F ind launched by adaptive adversaries using Lemma 2.

4.2 LaOla-Based Multiplication
In this part, we first revisit the degree reduction techniques from the original LaOla circuit
compiler [BEF+23] which is designed for Shamir’s secret sharing [Sha79], then we introduce
a gadget SplitRed (cf. Alg. 7) which is adapted from [BEF+23] to support packed secret
sharing. Finally, we analyze the security properties of our modified gadget SplitRed.

SplitRed Gadget. Berndt et al. [BEF+23] proposed the LaOla circuit compiler which
contains a novel multiplication gadget that avoids the doubling of the polynomial’s
degree after the share-wise multiplication by reducing the degree of two input polynomial
sharings, (Fi)i∈[n] and (Gi)i∈[n], from d to d

2 before the share-wise multiplication. This
degree reduction technique presents a technical challenge as it must preserve leakage-
and fault resilience as discussed in Section 2.1. For simplicity, we use the polynomial
representation of the shares to describe the multiplication. In a nutshell, SplitRed splits
the degree-d polynomials intended for multiplication, f (X) and g (X), into four degree-d
polynomials f ′ (X), f ′′ (X), g′ (X) and g′′ (X), such that f̃ (X) = f ′ (X) + f ′′ (X) and
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g̃ (X) = g′ (X) + g′′ (X), where f̃ (X) and g̃ (X) are degree- d
2 polynomials that embed the

same secrets as f (X) and g (X), i.e., f̃ (0) = f (0) and g̃ (0) = g (0). This degree reduction
is executed using the gadget SplitRed proposed in [BEF+23], which effectively splits the
polynomial and reduces the degree of polynomials f (X) and g (X). After performing the
SplitRed on f (X) and g (X), we compute four times the share-wise multiplication to get

h0(X) = (f ′ (X) · g′ (X)) , h1(X) = (f ′ (X) · g′′ (X)) ,
h2(X) = (f ′′ (X) · g′ (X)) , h3(X) = (f ′′ (X) · g′′ (X)) ,

which leads to four polynomials that can be share-wise added
∑3

i=0 hi(X) such that it
holds

3∑
i=0

hi(X) = (f ′ (X) + f ′′ (X)) · (g′ (X) + g′′ (X)) = f̃ (X) · g̃ (X) ,

where f̃ (X) · g̃ (X) hides the secret f (0) · g (0). Next, we describe how to modify the
gadget SplitRed to be compatible with packed secret sharing [FY92]. In the following
discussion, we assume polynomials f (X) and g (X) embed two vectors of secrets instead of
two single secrets, respectively. For ease of description, we only consider a polynomial f (X)
that hides secret vector v = (v0, . . . , vk−1, vk, . . . , vd)10 at support points (u0, u1, . . . , ud)
such that f (ui) = vi for all i ∈ [d + 1] and generates n packed secret shares F =
(F0, . . . , Fn−1) by evaluating at support points x0, . . . , xn−1. Our goal is to generate n
pair of new packed secret shares F ′ =

(
F ′

0, . . . , F
′
n−1
)

and F ′′ =
(
F ′′

0 , . . . , F
′′
n−1
)

such
that f̃ (X) = f ′ (X) + f ′′ (X) , where F̃ =

(
F̃0, . . . , F̃n−1

)
are shares generated with the

degree- d
2 polynomial f̃ (X) = f̃0 + f̃1X + . . .+ f̃ d

2
X

d
2 such that f̃ (xi) = F̃i for all i ∈ [n]

and f̃ (ui) = vi for all i ∈ [k], and F ′ and F ′′ are two vector of shares generated using
f ′ (X) and f ′′ (X). The key step is to securely calculate the coefficients of polynomial
f̃ (X) using shares F0, . . . , Fn−1.

Our Modification. Recall the fundamental properties of packed secret sharing introduced
in [FY92]. Let v denote the secrets v0, . . . , vd, U−1 denote Van−1

(d+1)×(d+1)(u0, . . . ud), and
V denote Van−1

(d+1)×n(x0, . . . xn−1). Namely, we generate secret shares F = (F0, . . . , Fn−1)
through the following steps:

F = v · U−1 · V, (7)

and the coefficients of the degree- d
2 polynomial f̃ (X) through,

f̃ =
(
f̃0, . . . , f̃ d

2

)
=
(
v0, . . . , v d

2

)
· Van−1

( d
2 +1)×( d

2 +1)
(
u0, . . . , u d

2

)
. (8)

We obtain the degree-d
2 shares F̃ by first unmasking the packed secret shares F

belonging to a degree-d polynomial f (X) while simultaneously re-masking them with
respect to a degree- d

2 polynomial f̃ (X). This is possible, as we can present masking and
unmasking as linear transformations using vector-matrix multiplication. More specifically,
we realize the degree reduction in two steps. In the first unmasking step, we want to find
a linear transformation between F and f̃ using a n×

(
d
2 + 1

)
matrix MF →f̃ , i.e.,

f̃ = F ·MF →f̃ . (9)

10Note that v0, . . . , vk−1 represent the k (< d
2 ) secrets to be encoded and vk, . . . , vd represent the

randomness (or redundancy) used for packed secret sharing.
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In the second re-masking step, we use the coefficient vector f̃ obtained in the first step to
construct polynomials f ′ (X) and f ′′ (X) using our modified SplitRed gadget (cf. Alg. 7).
Finally, we can generate the desired n pair of packed secret shares F ′ and F ′′. Since
F is a vector of secret shares and SplitRed gadget only involves linear operation, the
above two steps can be done as secret-sharing operations while satisfying the combined
resilience requirement (cf. Sec. 2.1). Due to space limitation, the details of constructing
the n×

(
d
2 + 1

)
matrix MF →f̃ are presented in Supplementary Material A.2. For ease of

reference in the ensuing discussion, we simply refer to this matrix as M when discussing
the linear transformation of gadget SplitRed. So far, we have found the matrix M for
linear transformation between F and f̃ . Next we only need to modify the constant term
λ̂i

j = λ0,j +
∑n−1

l=d+1 λl,j · xl
i in the original SplitRed [BEF+23] to

λ̂i
j = Mj,0 · x0

i + . . .+Mj, d
2
· x

d
2
i + Ej,i =

d
2∑

l=0
Mj,l · xl

i + Ej,i, (10)

where the λi,j are the elements of the matrix Van(d+1)×n (x0, . . . , xn−1). Furthermore, we
can verify that

∑ d
2
l=0 Mj,l · xl

i guarantees the condition that f̃ (X) = f ′ (X) + f ′′ (X) and
Ej,i is the error propagation (or preserving) term [SFES18] that would preserve the error
coefficients of f (i.e., the coefficients of the degree > d terms in f (X)) such that the
faulted inputs (Fi + ∆i)i∈[n] can be detected. Specifically, Ej,i is defined as follows:

Ej,i =
{
λj,n−i−1 if 0 ≤ i < e

0 if e ≤ i ≤ n− 1
. (11)

Further, thanks to the efficiencies of packed secret sharing, our modified gadget SplitRed
(cf. Alg. 7) offers improved amortized cost relative to the original SplitRed in [BEF+23]
(cf. Tab. 3).

In the following part, we prove the correctness and security of our modified SplitRed
gadget (cf. Alg. 7).

Lemma 11. The modified gadget SplitRed is correct, i.e., f ′ (um) + f ′′ (um) = f (um)
for m ∈ [d/2], if there are no faults in the inputs or gadgets.

Proof. Within this proof, we define the following notations for the matrix that is used to
mask a secret M = U−1

(d+1)×(d+1) (u0, . . . , ud) · V(d+1)×n (x0, . . . , xn−1). Similar to Section
2.2, we denote by M−1 the matrix, used for unmasking (cf. Supp. A.1). Moreover, we
denote MF →f̃ by MF →f̃ for simplicity. We begin by inserting the values defined in



26 All-You-Can-Compute: Packed Secret Sharing for Combined Resilience

SplitRed:

f ′ (um) + f ′′ (um) =
n∑

i=0

(
F ′

i ·M−1
i,m

)
+

n∑
i=0

(
F ′′

i ·M−1
i,m

)
(12)

=
n∑

i=0

∑
j∈[ n

2 ]

F ′j
i

M−1
i,m

+

 n∑
i=0

∑
j∈[ n

2 ]

F ′j+ n
2

i

M−1
i,m

 (13)

=
n∑

i=0

∑
j∈[ n

2 ]

λ̂i
jFj + gj

i

M−1
i,m

 (14)

+

 n∑
i=0

∑
j∈[ n

2 ]

λ̂i
j+ n

2
Fj+ n

2
− gj+ n

2
i

M−1
i,m

 (15)

=
n∑

i=0

∑
j∈[n]

λ̂i
jFj

M−1
i,m

+

 n∑
i=0

∑
j∈[n]

g̃j
i

M−1
i,m

 , (16)

where the second term in the last equation equals zero because
(
g̃j

i

)
j∈[n]

are zero encodings.

This second term is a linear combination with M−1
i,m, which corresponds to the unmasking

step presented in Section 2.2. By definition of λ̂i
j it follows:

=
n∑

i=0

∑
j∈[n]

λ̂i
jFj

M−1
i,m (17)

=
n∑

i=0

∑
j∈[n]

 d
2∑

l=0
MF →f̃

j,l · xl
i + Ej,i

 · Fj

M−1
i,m (18)

=
n∑

i=0

∑
j∈[n]

 d
2∑

l=0
MF →f̃

j,l · xl
i

 · Fj

M−1
i,m +

n∑
i=0

∑
j∈[n]

Ej,i · Fj

M−1
i,m, (19)

where the last equation is equal to zero in case no fault is injected. Moreover,

=
n∑

i=0

∑
j∈[n]

d
2∑

l=0
MF →f̃

j,l · Fj · xl
i

M−1
i,m

=
n∑

i=0

∑
j∈[n]

d
2∑

l=0

(
vj · U−1

j,l

)
· xl

i

M−1
i,m

holds true, due to the definition of MF →f̃ (cf. Supp. A.2). Note that xl
i = Vl,i, where V
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denotes the Vandermonde matrix with respect to (x0, . . . , xn−1). By definition,

=
n∑

i=0

∑
j∈[n]

d
2∑

l=0

(
vj · U−1

j,l

)
· xl

i

M−1
i,m (20)

=
d
2∑

j=0
vj ·

(
n∑

i=0
Mj,i ·M−1

i,m

)
(21)

=
d
2∑

j=0
vj ·

{
1 if j = m

0 else
(22)

= vm = f(um). (23)

We remark that f ′ (X) + f ′′ (X) is a degree- d
2 polynomial by construction. Note that

f ′ (X) + f ′′ (X) is a re-shared version of f (X) with respect to MF →f̃ . The re-sharing is
achieved by share-wise additions to zero encodings of degree-d

2 as well as degree-d zero
encodings

(
ĝj

i

)
i∈[n]

that cancel out, as they are added to f ′ (X) and subtracted from

f ′′ (X). Furthermore, the matrix MF →f̃ for re-sharing f is a n×
(

d
2 + 1

)
matrix, setting

the highest d
2 coefficients of f (X) to zero, as shown in Supplementary Material A.2.

Next, we demonstrate that the modified gadget SplitRed is (d− k + 1)-frNI by proving
it is NI and fault-invariant.

Lemma 12 ([BEF+23, Lem. 5]). The modified gadget SplitRed is (d+ 1− k)− NI.

In comparison to [BEF+23, Lem. 5], we only change the constants to multiply the
shares with. This modification does not affect the proof. The complete proof is provided
in the supplementary material in Lemma 18.

Lemma 13 ([BEF+23, Thm. 17]). The modified gadget SplitRed is fault-invariant with
respect to F+.

Proof. In SplitRed, all the operations are share-wise addition or multiplication with
constant values. Because additive faults ξ ∈ F+ can be described with a fault value a ∈ F
such that the faulted value is ξ(x) = x+ a, and operation + is commutative, we can shift
the fault a from the input to the output and vice versa. Furthermore, the multiplication
of a constant s can be seen as s-wise addition. Hence, we can push the faults injected into
SplitRed to inputs or outputs.

Compression Gadget. So far, we constructed the SplitRed gadget, which splits a degree-d
polynomial f(X) into two degree-d polynomials f ′(X) and f ′′(X), such that their addition
results in a degree- d

2 polynomial corresponding to the same secret values as f(X). Doing
this twice, we obtain polynomials f ′(X) and f ′′(X), as well as g′(X) and g′′(X), encoding
the same secrets as f(X) and g(X), respectively. To obtain our desired multiplication
gadget, it is left to share-wise multiply and add the results together, since we can rewrite

f(X) · g(X) = f ′(X) · g′(X) + f ′(X) · g′′(X) + f ′′(X) · g′(X) + f ′′(X) · g′′(X)

Hence, to obtain our desired multiplication gadget, we integrate the gadget SplitRed
with share-wise multiplication gadget Mult (cf. Alg. 2). The next crucial step involves
securely summing the multiplication results of these splitted polynomials, i.e., to perform
the additions in f ′(X) · g′(X) + f ′(X) · g′′(X) + f ′′(X) · g′(X) + f ′′(X) · g′′(X). This can
be achieved with the help of the SWComp, presented in Algorithm 8.
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Algorithm 7 SplitRed for n = d+ e+ 1 and k < d
2

Input : Degree-d shares of v = (v0, . . . , vd) as (Fi)i∈[n]
Output : Degree-d shares of v′ = (v′

0, . . . , v
′
d) as (F ′

i )i∈[n] and degree-d shares of v′′ =
(v′′

0 , . . . , v
′′
d ) as (F ′′

i )i∈[n] such that fj = f ′
j + f ′′

j for j ∈
[

d
2 + 1

]
1 initialize (F ′

i )i∈[n], (F ′′
i )i∈[n]

2 for j ∈
[

n
2
]

do
3

(
ĝj

i

)
i∈[n]

← ZEncd
n

4 for j ∈
[

n
2
]

do
5

(
g̃j

i

)
i∈[n]

← ZEnc
d
2
n

6
(
gj

i

)
i∈[n]

←
(
g̃j

i

)
i∈[n]

+
(
ĝj

i

)
i∈[n]

7 for j ∈
[

n
2
]

do
8 for i ∈ [n] do
9 F ′j

i ← λ̂i
j · Fj

10 for j ∈
[

n
2
]

do
11

(
F j

i

)
i∈[n]

←
(
F ′j

i

)
i∈[n]

+
(
gj

i

)
i∈[n]

12 for j ∈
[

n
2
]

do
13 (F ′

i )i∈[n] ← (F ′
i )i∈[n] +

(
F j

i

)
i∈[n]

14 for j ∈
[

n
2
]

do
15

(
g̃

j+ n
2

i

)
i∈[n]

← ZEnc
d
2
n

16
(
g

j+ n
2

i

)
i∈[n]

←
(
g̃

j+ n
2

i

)
i∈[n]

−
(
ĝj

i

)
i∈[n]

17 for j ∈
[

n
2
]

do
18 for i ∈ [n] do
19 F ′j+ n

2
i ← λ̂i

j+ n
2
· Fj+ n

2

20 for j ∈
[

n
2
]

do
21

(
F j+ n

2
i

)
i∈[n]

←
(
F ′j+ n

2
i

)
i∈[n]

+
(
g

j+ n
2

i

)
i∈[n]

22 for j ∈
[

n
2
]

do
23 (F ′′

i )i∈[n] ← (F ′′
i )i∈[n] +

(
F j+ n

2
i

)
i∈[n]

24 return (F ′
i )i∈[n], (F ′′

i )i∈[n]

Algorithm 8 SWComp for n = d+ e+ 1 and k ≤ d

Input : 4 degree-d sharings of vj as
(
Hj

i

)
i∈[n]

, with j ∈ [4]

Output : Degree-d sharing (Qi)i∈[n] of v0 + v1 + v2 + v3

1 (Qi)i∈[n] ← sZEncd
n(cf. Alg. 3)

2 (Qi)i∈[n] ←
((((

(Qi)i∈[n] +
(
H0

i

)
i∈[n]

)
+
(
H1

i

)
i∈[n]

)
+
(
H2

i

)
i∈[n]

)
+
(
H3

i

)
i∈[n]

)
3 return (Qi)i∈[n]
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The correctness of SWComp (cf. Alg. 8) follows directly by the fact that sZEncd
n

(cf. Alg. 4) outputs a zero encoding and the correctness of share-wise addition. In a
nutshell, security is ensured because we take share-wise multiplications as inputs and
perform a secure re-randomization (or re-sharing) while adding the inputs share-wise. We
present a detailed security analysis of SWComp in Supplementary Material D.

Multiplication Gadget for k Inputs. Now we have everything together for a detailed
description of adapting the multiplication gadget [BEF+23, Alg. 6] to packed secret
sharing [FY92]. We use SplitRed (cf. Alg. 7 in Sec. 4.2) to construct the multiplication
gadget Multk−Input (cf. Alg. 9). Recall that we utilize the degree reduction technique
presented in [BEF+23]. Namely, the multiplication algorithm obtains two degree-d shares
(Fi)i∈[n] and (Gi)i∈[n] as inputs. Then, SplitRed is performed on both inputs, which results
in new degree-d sharings (F ′

i )i∈[n], (F ′′
i )i∈[n], (G′

i)i∈[n], (G′′
i )i∈[n], such that (F ′

i )i∈[n] +
(F ′′

i )i∈[n] (resp. (G′
i)i∈[n] +(G′′

i )i∈[n]) is a degree- d
2 sharing of the same k secrets of (Fi)i∈[n]

(resp. (Gi)i∈[n]). Afterward, a share-wise multiplication is performed on each combination.
In the end, we can add the multiplication results together. The correctness directly follows
from the correctness proof of SplitRed in Section 4.2, and the security analysis is given in
Lemma 14 and Lemma 15.

Algorithm 9 Multk−Input for n = d+ e+ 1 and k < d
2

Input : Degree-d shares of v = (v0, . . . , vd) as (Fi)i∈[n] and degree-d shares of v′ =
(v′

0, . . . , v
′
d) as (Gi)i∈[n]

Output : Degree-d shares of
(
v0 · v′

0, . . . , vk−1 · v′
k−1
)

as (Qi)i∈[n]

1
(

(F ′
i )i∈[n] , (F ′′

i )i∈[n]

)
← SplitRed

(
(Fi)i∈[n]

)
2
(

(G′
i)i∈[n] , (G′′

i )i∈[n]

)
← SplitRed

(
(Gi)i∈[n]

)
3
(
H0

i

)
i∈[n] ← SWMult

(
(F ′

i )i∈[n] , (G′
i)i∈[n]

)
4
(
H1

i

)
i∈[n] ← SWMult

(
(F ′

i )i∈[n] , (G′′
i )i∈[n]

)
5
(
H2

i

)
i∈[n] ← SWMult

(
(F ′′

i )i∈[n] , (G′
i)i∈[n]

)
6
(
H3

i

)
i∈[n] ← SWMult

(
(F ′′

i )i∈[n] , (G′′
i )i∈[n]

)
7 (Qi)i∈[n] ← SWComp

((
H0

i

)
i∈[n] ,

(
H1

i

)
i∈[n] ,

(
H2

i

)
i∈[n] ,

(
H3

i

)
i∈[n]

)
8 return (Qi)i∈[n]

Lemma 14 ([BEF+23, Thm. 16]). The gadget Multk−Input is (d+ 1− k)-SNI.
Proof (sketch). The only difference between our gadget Multk−Input and the original mul-
tiplication gadget Mult in [BEF+23] is that we modified the public term λ̂i

j (line 9 and
19) in SplitRed (cf. Alg. 7). Therefore, we only need to prove that our modified SplitRed
(cf. Alg. 7) has the same and necessary security property, which is (d+ 1− k)-NI, as
the original one in [BEF+23]. We prove that our modified SplitRed (cf. Alg. 7) satisfies
(d+ 1− k)-SNI in Lemma 12.

Lemma 15 ([BEF+23, Thm. 24]). The gadget Multk−Input is e-f-robust.
Proof (sketch). Since we only modified the SplitRed (cf. Alg. 7) gadget inside Multk−Input
compared to the original Mult in [BEF+23]. We only need to show that our modified
SplitRed (cf. Alg. 7) has the necessary security, which is given in Lemma 24, as the original
SplitRed in [BEF+23]. In addition, we give another (slightly simpler) way to prove the
e-f-robustness of Multk−Input in Lemma 25.
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LaOla-Based Compiler for PSS. We can use our multiplication gadget Multk−Input
(cf. Alg. 9), refresh gadget Refresh (cf. Alg. 6), linear transformation gadget GadgetLT (cf.
Alg. 5), the share-wise addition SWAdd (cf. Alg. 1), and share-wise multiplication gadget
SWMult (cf. Alg. 2) to build a circuit compiler (we name it LaOla-based PSS compiler)
secure against t < d + 1 + k probes, where d denotes the degree of the polynomial and
k the number of embedded secrets. Furthermore, our compiler is simultaneously secure
against e additive fault F+ using n = d+ e+ 1 shares. Moreover, our BGW-based PSS
compiler and LaOla-based PSS compiler that are secure against the additive fault F+ can
be extended to resist wire-independent faults F ind launched by adaptive adversaries using
Lemma 2. Details are provided in Supplementary Material E.

5 Exponentiation Gadget
The Frobenius optimization is a way to reduce the computational cost of certain exponenti-
ations and was first presented by Prouff and Roche [PR11]. In the following, we first recap
their method which is based on Shamir’s secret sharing [Sha79]. Then, we demonstrate
how it can be applied to packed secret sharing [FY92] for efficient gadgets. Finally, we
analyze the leakage- and fault-resilience of our gadget Exp (cf. Alg. 10).

Frobenius Optimization. Let p := |F| denote the field characteristic of the underlying
arithmetic circuit. Using the method of Prouff and Roche, we can compute the operation
y 7→ yp very efficiently. These operations are particularly useful when considering, for
example, the AES SubBytes transformation. This technique requires the following
condition: the support points αi of our polynomial fulfill the stability over Frobenius
automorphism property, which says that for every support point αi, there exists a point
αj(i) such that αj(i) = αp

i .
In the case of Shamir’s secret sharing, we can derive the following. Let p ∈ F[X] be a

polynomial of degree d embedding one secret s0, i.e.

p (x) = s0 +
d∑

l=1
alx

l.

Now, consider a polynomial embedding the p-th power of secret s0, i.e.

p′ (x) = sp
0 +

d∑
l=1

ap
l x

l.

Given that the coefficients a1, . . . , ad of p are distributed uniformly at random, the
coefficients ap

1, . . . , a
p
d are also distributed uniformly at random. Hence, we can obtain

a sharing (F ′
0, . . . , F

′
n−1) of sp

0 from the sharing (F0, . . . , Fn−1) of s0 through share-wise
exponentiation of p, as follows:

F p
i = (s0 +

d∑
l=1

alα
l
i)p = sp

0 +
d∑

l=1
ap

l α
lp
i = sp

0 +
d∑

l=1
ap

l α
l
j(i) = F ′

i ,

where (a+ b)p = ap + bp for a, b ∈ F , since we are in a field of characteristic p.
With these preliminaries, we can adapt the Frobenius optimization to packed secret

sharing. The corresponding gadget is presented in Algorithm 10.
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Algorithm 10 Exp using Frobenius optimization for n = d+ e+ 1 and k ≤ d
Input : Degree-d shares of v = (v0, . . . , vd) as (Fi)i∈[n]
Output : Degree-d shares of (vp

0 , . . . , v
p
d) as (F ′

i )i∈[n]

1 for i ∈ [n] do
2 F ′

i ← F p
i

3 return (F ′
i )i∈[n]

Frobenius Optimization in Packed Secret Sharing. In this section, we prove the cor-
rectness of Algorithm 10. We consider the secret vector v = (v0, . . . , vd) embedded in the
shares (Fi)i∈[n]. Recall that by definition of our packed secret sharing,

(F0, . . . Fn−1) = v · U−1 · V,

where U−1 denotes the inverse of a Vandermonde matrix with respect to the support
points (u0, . . . , ud), and V is the Vandermonde matrix considering the support points
(x0, . . . xn−1). Assuming that (u0, . . . , ud) and (x0, . . . xn−1) fulfill the stability over Frobe-
nius automorphism property with respect to disjoint sets, the above exponentiation gadget
(cf. Alg. 10) is correct. In more detail, assume that for every ui there exists a point uj(i)
such that uj(i) = up

i , and for every xi there exists a point xj(i) such that xj(i) = xp
i .

Additionally, we suppose that {ui, uj(i)|i ∈ [n]} ∪ {xi, xj(i)|i ∈ [n]} = ∅. Costes and
Stam [CS21] showed that such disjoint sets do exist and can be used e.g., for AES. Note
that in the following description, we assume that vector v and matrices U−1, V are already
necessarily padded with zeros to ensure the feasibility of matrix multiplication without
affecting the operation correctness. Then, by setting M = U−1 · V , we obtain

F ′
i = F p

i =
(

n−1∑
l=0

vl ·Ml,i

)p

=
n−1∑
l=0

vp
l ·M

p
l,i,

where the last equation holds, because we are in a field of characteristic p, and thus
(a+ b)p = ap + bp for a, b ∈ F. Let us examine the matrix M in more detail. By definition,
Ml,i =

∑n−1
m=0 U

−1
l,m · Vm,i. Since we are operating in a field of characteristic p, we have

Mp
l,i =

∑n−1
m=0

(
U−1)p

l,m
· V p

m,i. Given that V is a Vandermonde matrix, raising each entry
of V to the power of p results in a Vandermonde matrix with respect to the support points
(xp

0, . . . , x
p
n−1), which exist due to stability over the Frobenius automorphism. We still

need to show that the same property holds for U−1. By definition, U · U−1 = I, where I
denotes the identity matrix. Let λj,k denote the element in the j-th row and k-th column
of U−1. Then,

d∑
j=0

ui,j · λj,k =
{

1 if i = k

0 otherwise.

It follows directly, that the matrix
(
λp

i,j

)
i∈[d+1],j∈[d+1] is the inverse of the Vandermonde

matrix Up := Van(up
0, . . . , u

p
n−1), since

d∑
j=1

up
i,j · λ

p
j,k =

 d∑
j=1

ui,j · λj,k

p

=
{

1p if i = k

0p otherwise.

Due to the stability over the Frobenius automorphism of ui and xi with respect to
disjoint sets, we conclude that (F ′

0, . . . , F
′
n−1) is a valid encoding of (vp

0 , . . . , v
p
k).
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Note that in both Shamir’s secret sharing and packed secret sharing, we obtain valid
shares of the secret(s), but in polynomials with respect to different support points, namely
ap

i instead of ai. Fortunately, we can use the linear transformation gadget GadgetLT
(cf. Alg. 5) to shift the support points from ap

i back to ai. Otherwise, we can continue
calculations with respect to the new support points ap

i . Moreover, when aiming to
multiply the shares F ′

i with shares with respect to F ′
i or Fi, we need to perform a refresh

operation in order to satisfy the SNI property and maintain composability. In this case, the
linear transformation gadget GadgetLT (cf. Alg. 5) can be used to both shift and refresh
simultaneously without increasing the overall complexity.

Security Analysis. In a field of characteristic 2, we can use the share-wise multiplication
gadget Algorithm 2 to compute the squaring without assuming the existence of a squaring
gate. However, in the more general case of a finite field with characteristic p, we need to
assume the existence of a gate evaluating x 7→ xp. With this assumption, the NI property
follows directly, as we only perform share-wise operations. Consequently, each of the
tint ≤ t internal probes can be perfectly simulated with at most tint shares of the input
sharing. Furthermore, fault-invariance (cf. Def. 7) with respect to additive faults ξ ∈ F+

holds true, as (Fi + ξ)p = F p
i + ξp in a field of characteristic p. Moreover, recall the concept

of fault-robustness (cf. Def. 3): if we have sinput faults injected into the input and sint
faults injected during the computation of the gadget, we want to guarantee that either
only sinput outputs are affected or the outputs contain high-order coefficients that can be
detected. Due to the error-correcting property of packed secret sharing and the fact that
we perform only share-wise operations, we can ensure with a high probability that any
inserted error results in a higher-degree polynomial, which can be detected.

6 Fault Detection
In contrast to duplicated Boolean masking, which requires fault detection or correction
within the gadgets to guarantee security (cf. [DN20, FRSG22, FGM+23]), our approach
does not face this limitation. Due to error propagation [SFES18], we can first calculate
the whole circuit and perform only one error detection right before the final decoding.

Our fault detection algorithm (cf. Alg. 13) can be summarized as follows. We hide
the secrets embedded in our input polynomial f(X) =

∑
i fiX

i, represented by the shares
(Fi)i∈[n], by adding a completely random polynomial of degree d. Specifically, we perform
a special type of the zero-encoding operation, RandomEncd

n (cf. Alg. 11), which encodes
k random values, r0, . . . , rk−1 ←$Fk (instead of encoding k zeros as in Section 3.5) into
the random polynomial. Similar to a Refresh, we repeat this randomization d + 1 − k
times. Namely, we add d+ 1− k shares

(
R

(j)
i

)
i∈[n]

, j ∈ [d+ 1− k] of independent and

uniformly random polynomials R(j)(X) to our input shares (Fi)i∈[n] in a share-wise manner.
This procedure is called RandomRefreshd

n (cf. Alg. 12). After this RandomRefreshd
n, we

recalculate the highest coefficients gi, i ∈ {d+ 1, . . . , n− 1} of the resulting randomized
polynomial g(X) = f(X)+

∑d+1−k
j=0 R(j)(X), using our extended matrix Vn (cf. Supp. A.1).

Finally, we check if any of these coefficients are zeros. In case there exists a non-zero
coefficient, we abort11. We repeat the above steps e times to guarantee fault robustness
(cf. Def. 3) and call the resulting algorithm FaultDetect (cf. Alg. 13). For further details
on the algorithms, we refer to Supplementary Material F.

Intuitively, this approach does not reveal anything about the secrets underlying the
polynomial f(X), as we add d+1−k polynomials with independent and uniformly random

11If there does not exist an implementation of the abort state, we assume the existence of a public vector
⊥ = (⊥0, . . . , ⊥e), acting as abort flags, similar to [DN20]. This vector is initially set to zeros, and all
values ⊥0, . . . , ⊥e are set to 1 if there is an abort.
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coefficients in RandomRefreshd
n. Hence, these secrets are completely randomized and due to

the probing threshold t < d+1−k, an adversary is not able to obtain any information about
the underlying secrets during the computation of (Gi)i∈[n] :=

(
Fi +

∑
j∈[d+1−k] R

(j)
i

)
i∈[n]

.
Due to our setting for combined security, the adversary can insert e faults. However, if a
fault ξ ∈ F+, such that ξ(x) = x+ a, is inserted in RandomRefreshd

n, one of the following
two cases occurs:

• Either we can see the fault as if one of the secrets ri embedded in the shares(
R

(j)
i

)
i∈[n]

for j ∈ [d+ 1− k] is shifted by fault ξ. However, ri was chosen uniformly
at random. Hence, the result ri + a is distributed uniformly random as well.

• Or the degree of the underlying polynomial of the resulting shares
(
R

(j)
i

)
i∈[n]

,
j ∈ [d+ 1− k], increases.

In both cases, the underlying polynomial of shares (Gi)i∈[n] only contains the randomized
secrets, which are independent of the secrets embedded in (Fi)i∈[n]. Moreover, the error
detection FaultDetect remains correct, as it is independent of the underlying secrets as
well, because of fault robustness (cf. Def. 3).

Due to this independence, it is sufficient to consider fault resilience for the remaining
steps, which is given, as we repeat the above randomization and coefficient reconstruction
steps for e times in FaultDetect. Since all involved polynomials are of degree d in case no
fault was inserted, an adversary must insert at least one fault to increase the degree of the
underlying polynomial. Given the faulting threshold of e, repeating the procedure e times
is sufficient. Detailed proofs for all mentioned properties can be found in Supplementary
Material F. Concrete numbers for the Boolean circuit complexity of one error detection/
correction gadget for our LaOla-based PSS approach, our BGW-based PSS approach, as
well as the duplicated Boolean masking approaches of [DN20] and [FRSG22, FGM+23]
are provided in Table 5. We consider 16 inputs of elements in F28 for polynomial masking,
and 16 bit secrets for the duplicated Boolean masking approaches. The numbers for our
LaOla-based PSS approach are higher than those for the BGW-based PSS approach due
to the choice of n. This is necessary to satisfy the condition k < d

2 , which is required for
correctness of the SplitRed gadget. Since [DN20] and [FRSG22, FGM+23] did not specify
the majority function used for error detection/ correction, we use insertion sort, which is
known to be efficient for a small number of faults e (cf. [CLRS22, YYG11]). For further
details, we refer to Supplementary Materials G.2.

Table 5: Boolean circuit complexity for error-detection/correction of our BGW-based PSS
and LaOla-based PSS compiler, and the duplicated Boolean masking [DN20, FRSG22,
FGM+23] with respect to elements in F28 . The security parameters are t probes and e
faults with e = t and e, t ∈ [1, 9]. The best complexity for achieving combined security is
marked in bold. Please note that [FRSG22] shows that NINA* is not combined secure.

t = e Error Detection/Correction
LaOla-PSS
(this work)

BGW-PSS
(this work)

CINI-MINIs
[FGM+23]

NINA*
[DN20]

1 650896 59024 16896 224
2 1338388 137304 117120 816
3 2063106 285910 419328 1984
4 2825068 526706 1094400 3920
5 3624292 884004 2365440 6816
6 4460796 1384564 4507776 10864
7 5334598 2057594 7848960 16256
8 6245716 2934750 12768768 23184
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7 Application
7.1 Secure AES Operations
In this section, we consider the block cipher AES-128 with 16 elements of the Galois field
GF(28). The encryption process involves ten rounds of the following sequence of operations:
First, the operation AddRoundKey is used to add a round key of length 128 to the
internal state. The round keys involved here are derived from the secret key through key
expansion. Next, we apply SubBytes, which applies the function y 7→ y254 to each byte
of the internal state, followed by the affine transformation

τ(y) =0x63 + (0x05 · y) + (0x09 · y2) + (0xf9 · y4) + (0x25 · y8)
+ (0xf4 · y16) + (0x01 · y32) + (0xb5 · y64) + (0x8f · y128).

For a detailed description, please refer to [PR11]. Then the linear transformation
ShiftRows is performed. When considering our 16 elements as 4× 4-matrix, ShiftRows
consists of a permutation of (some of) the rows, namely

A =


a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

 7→ A′ =


a0 a1 a2 a3
a5 a6 a7 a4
a10 a11 a8 a9
a15 a12 a13 a14


The last transformation used in a round (except from the last round) is called MixColumns.
This transformation is applied to each column of the matrix A′ at a time. Each column
is multiplied by a fixed Maximum Distance Separable (MDS) matrix Z to produce the
transformed state A′′.

AES in Packed Secret Sharing. When applying our packed secret-sharing approach
(cf. Sec. 2.2), we can perform the above transformations as follows. We choose the number
of secrets k = 16 and encode these 16 secrets into one group of packed secret sharings
with n shares as internal state shares. Note that we assume that the round keys are also
encoded. The operation AddRoundKey can be achieved by a share-wise addition of the
internal state shares and the round key shares.

SubBytes considers multiplication of the internal states with themselves, as well as
a polynomial evaluation, τ(y), which can be realized by gadget Multk−Input (cf. Alg. 9)
together with matrix multiplication and share-wise addition. The linear transforma-
tion ShiftRows can be obtained using our gadget Permutation (cf. Alg. 5) with the
corresponding function ℓφ0,...,φd

i,j (cf. Tab. 4).
Finally, for the MixColumns operation, we first split our internal state into four

columns. Specifically, we consider four resharings of A′, each containing one column of
sensitive values (v0, . . . , v3), (v4, . . . , v7), (v8, . . . , v11) and (v12, . . . , v15), respectively. This
can be performed by gadget Permutation (cf. Alg. 5) taking A′ and a zero encoding as
inputs. Subsequently, we perform the matrix multiplication with the MDS matrix and
share-wise add all four resulting secret shares together to obtain A′′. It remains to show
how to efficiently compute the squaring required in SubBytes. We realize the optimization
by adapting the Frobenius optimization (cf. Sec. 5) to packed secret sharing.

7.2 Complexity Analysis
We calculate the number of gadgets needed in the operations of AES similarly to [PR11,
ABEO24], and summarize the results in Table 6. We denote the number of polynomials
needed to evaluate one round of AES-128 by B. For example, using Shamir’s secret
sharing [Sha79], we need 16 secrets in GF(28), where each secret is encoded into one
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polynomial, resulting in B = 16 polynomials. Using the double-sharing approach presented
by Arnold et al. [ABEO24], which encodes two secrets into one polynomial, we obtain
B = 8 polynomials. Our method sets k = 16, allowing us to encode 16 secrets into one
polynomial, resulting in B = 1.

When considering security against t-probing attacks, Shamir’s secret sharing requires
a degree-t polynomial, the double-sharing approach of Arnold et al. uses a degree-(t+ 1)
polynomial, and our approach uses a degree-(t+ k − 1) polynomial.

Table 6: The number of gadget (providing probing security t) calls required to mask the
operations of AES when operating on B ∈ {{16, 8}|{1}} polynomials.

AddRoundKey y 7→ y254 τ MixColumns ShiftRows
Add(t) B 7B 15

4 B | 15
Affine(t) 8B 3

4B | 3
Square(t) 7B 7B
Mult(t) 4B

In Figure 1 and Table 6, we depict the complexity for one round of AES-128 with
respect to various combined resilient compilers, the original LaOla compiler [BEF+23], the
double-sharing compiler [ABEO24], our BGW-based PSS compiler (cf. Sec. 4.1), and our
LaOla-based PSS compiler (cf. Sec. 4.2).

We set the number of fault injections e and the probing security t equal each other, i.e.,
e = t. Our BGW-based compiler outperforms the original LaOla compiler in one round of
AES for t = 5 and the double-sharing approach of Arnold et al. for t = 7 in terms of the
number of field operations. Regarding randomness complexity, our BGW-based compiler
outperforms the BGW approach with respect to Shamir’s secret sharing, the original LaOLa
compiler, as well as the double-sharing approach for t = 2. Our LaOla-based compiler
outperforms our BGW-based compiler with respect to both the number of operations and
randomness complexity for t = 13.

7.3 Comparison to Duplicated Boolean Masking
In this section, we compare our packed secret sharing based masking approach (cf. Sec. 4)
to the duplicated Boolean masking [DN20, FRSG22, FGM+23].

For comparison, we provide the concrete numbers of the Boolean gates required to
perform a single multiplication and error detection/correction, followed by a brief discussion.

As discussed in [DN20, FRSG22, FGM+23], Boolean masking requires fault detection
or correction mechanisms to be integrated during the computation. In contrast, our PSS-
based approach only needs to detect faults right before the decoding phase due to error
propagation [SFES18, BEF+23]. However, our fault detection algorithm, FaultDetect
(cf. Alg. 13), can also be used to detect faults earlier within the circuit.

In the following analysis, we use the error detection approach from [DN20], as [FRSG22,
FGM+23] does not provide a specific error detection or correction mechanism. However,
Boolean masking with error detection is vulnerable to Statistical Ineffective Fault Attacks
(SIFA) (cf. [FRSG22]). In order to circumvent this issue, more costly error correction
mechanisms are used by [FRSG22, FGM+23]. This is the reason why we consider concrete
numbers for complexity for error correction as well.

In Boolean masking, n = (e + 1) · (t + 1) shares are required for error detection,
and n = (2e + 1) · (t + 1) shares are needed for error correction. As suggested by
[FRSG22, FGM+23], errors can be corrected by duplicating each sharing of size t+ 1 for
2e+ 1 times, then sorting the (faulted) duplicated shares and selecting the median. Since
[FRSG22, FGM+23] does not specify a concrete sorting algorithm, we use the insertion
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sort algorithm for this purpose, given that it performs efficiently with small values of e
(cf. [CLRS22, YYG11]).

Finally, although we only utilize error detection in our work, it is important to note
that our PSS-based masking approach is inherently resistant to SIFA attacks. This is due
to the fault robustness property (cf. Def. 3), which is specifically designed to counteract
ineffective faults by ensuring that any faults lead to corrupted outputs [BEF+23].

For security parameters t and e, we consider elements in F28 that can be probed
or faulted in our PSS-based approaches, where we set the parallelization factor k = 16
to be consistent with the AES-128 application in Section 7, where k is the number of
secrets embedded in one polynomial using packed secret sharing (cf. Sec. 2.2). Since our
operations are performed over the field F28 , we transform these operations into Boolean
operations and calculate the necessary number of Boolean gates. We use the Boolean
circuits presented in [BDST20] for this transformation. As our approach does not require
any error detection during or after the multiplication gadget (cf. Sec. 4), we calculate the
numbers of Boolean gates without the detection gadget FaultDetect (and compute the
numbers of the multiplication together with a detection gadget in brackets).

In contrast, we consider elements in F2 for the duplicated Boolean masking [DN20,
FRSG22, FGM+23], where we run the multiplication gadget for 16 times to compute on
16 secrets as well. Note that here, a secret refers to a bit, not an element in F28 . As
the operations are also binary operations, we derive the gate counts by considering all
operations within the multiplication gadget and the detection/correction gadgets.

For t = e = 1, we need to perform 1408 operations for one multiplication in [DN20]
(with error detection), and 34560 in [FRSG22, FGM+23] (with error correction), which
outperforms both, our LaOla-based PSS compiler, which requires 5997328 (6648224) binary
operations, and our BGW-based PSS compiler which needs 436968 (495992) binary opera-
tions12. However, our BGW-based PSS approach already outperforms [FRSG22, FGM+23]
for t = e = 3. Namely, our BGW-based PSS compiler needs 1147840 (1433750) binary
gates, whereas [FRSG22, FGM+23] requires 1684480 binary gates for the multiplication
with error correction gadgets in place. A table (cf. Tab. 9) summarizing all numbers is
provided in Supplementary Material G.2.

Note that for t = e = {1, 2}, duplicated Boolean masking [FRSG22, FGM+23] achieves
the best Boolean circuit complexity for the multiplication (or AND) gadget (cf. Tab. 9).
However, the Boolean circuit for one round of AES-128 requires 2660 XOR gates. Recall
that duplicated Boolean masking [FRSG22, FGM+23] duplicates each share e+ 1 times,
and the Boolean circuit complexity for one XOR gadget is (2e+ 1) · (t+ 1). This is the
reason why duplicated Boolean masking [FRSG22, FGM+23] does not provide the best
Boolean circuit complexity for AES-128 when t = e = {1, 2} (cf. Tab. 1).

We emphasize that our compilers are (t, e)-combined resilient, which allows t probes
and e faults on field elements. In contrast, the duplicated Boolean masking from [FRSG22,
FGM+23] allows glitch-extended probes and binary faults on bits. Additionally, the
duplicated Boolean masking schemes from [DN20, FRSG22, FGM+23] do require error
detection or correction mechanisms to be integrated during multiplication, whereas our
approach only requires fault detection once during the final decoding phase.

8 Conclusion
This paper introduces an efficient approach for combined leakage and fault resilient
computation on packed secret sharing. We develop new gadgets and extend state-of-the-art
gadgets to apply them to packed secret sharing. All constructions are not only purely

12Note that the differences in our approaches arise from the different choices we make for n.
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leakage and fault resilient, but combined resilient allowing for simultaneous attacks where
faults can compromise the effectiveness of the leakage countermeasures.

To this end, our work addresses the challenges identified by Grosso et al. [GSF14]
and Arnold et al. [ABEO24], leading to the development of highly parallelized compilers.
We evaluate our improvements with an efficient AES scheme, achieving security against
combined attacks and improving the computational complexity by a factor of up to 4.5.
These results are a first step towards more efficiently protected implementations against
combined attacks. We leave the practical evaluation (both in terms of attack resistance
and efficiency) as important future work. This includes not only standalone side-channel
and fault attacks but also more sophisticated combined attacks where injected faults aim
to undermine the effectiveness of leakage countermeasures.
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A Matrix Transformation

A.1 Matrix Transformation For Error-Detection

In order to guarantee the error-detection property of packed secret sharing, we need
to consider all n shares during reconstruction. Recall the description of packed secret
sharing in Section 2.2. We use the same notation as presented there, namely, let v =
(v0, . . . , vd) denote a vector consisting of k secrets and d− k + 1 distinct random numbers.
We denote the inverse of the Vandermonde matrix of our support points u0, . . . , ud by
U−1 = Van−1

(d+1)×(d+1)(u0, . . . , ud). As previously, the Vandermonde matrix of support
points x0, . . . , xn−1 is V = Van(d+1)×n(x0, . . . , xn−1), where ui with i ∈ [d+1] and xi with
i ∈ [n] are pairwise distinct support points. The masking operation is defined as follows:

mask (v) = F = v ·M,

where M := U−1 · V .

Note that M is not a square matrix. Thus, M cannot be directly inverted. Instead,
we consider the (d+ 1) × n-matrix V . We extend matrix V up and obtain a square
matrix Vn = Vann×n(x0, . . . , xn−1). Note that Vn is a square Vandermonde matrix and
is thus invertible. Next, we define V −1

n = Van−1
n×n(x0, . . . , xn−1), and define V −1 to be

a n × (d+ 1) sub-matrix of V −1
n without the last (n − d − 1) rows. We can denote the

unmasking procedure by

unmask (F ) = F ·M−1,

where M−1 := V −1 · U . Correctness holds since

unmask (mask (v)) = unmask (v ·M) = v ·M ·M−1 = v · U−1 · V · V −1 · U

By definition, U is the inverse of U−1. Now, we need to consider V . Recall that f = v ·U−1

consists of d+ 1 elements (f0, . . . , fd). Hence,

Fl =
d∑

i=0
fi · Vl,i =

d∑
i=0

 d∑
j=0

Fj · V −1
j,i

 · Vi,l =
d∑

j=0
Fj

d∑
i=0
·V −1

j,i · Vi,l = Fl,

Since
∑d

i=0 ·V
−1

j,i · Vi,l = 0 if l ̸= j and 1 otherwise, we obtain the desired property for all
l ∈ [n].
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A.2 SplitRed Matrix Transformation

Next, we describe how to get the n×
(

d
2 + 1

)
matrix MF →f̃ . We start with Equation 7,

F = v · U−1 ·


1 1 1 . . . 1
x0 x1 x2 . . . xn−1
x2

0 x2
1 x2

2 . . . x2
n−1

...
...

... . . . ...
xd

0 xd
1 xd

2 . . . xd
n−1


(d+1)×n

(24)

=


f0
f1
f2
...
fd


T

·


1 1 1 . . . 1
x0 x1 x2 . . . xn−1
x2

0 x2
1 x2

2 . . . x2
n−1

...
...

... . . . ...
xd

0 xd
1 xd

2 . . . xd
n−1


(d+1)×n

(25)

=



f0
f1
f2
...
fd

0d+1
...

0n−1



T

·



1 1 1 . . . 1
x0 x1 x2 . . . xn−1
x2

0 x2
1 x2

2 . . . x2
n−1

...
...

... . . . ...
xd

0 xd
1 xd

2 . . . xd
n−1

xd
0 xd

1 xd
2 . . . xd

n−1
...

...
... . . . ...

xn−1
0 xn−1

1 xn−1
2 . . . xn−1

n−1


n×n

, (26)

where {0d+1, . . . , 0n−1} represent zero values. Then we can get

F ·



1 1 1 . . . 1
x0 x1 x2 . . . xn−1
x2

0 x2
1 x2

2 . . . x2
n−1

...
...

... . . . ...
xd

0 xd
1 xd

2 . . . xd
n−1

xd
0 xd

1 xd
2 . . . xd

n−1
...

...
... . . . ...

xn−1
0 xn−1

1 xn−1
2 . . . xn−1

n−1



−1

n×n

=



f0
f1
f2
...
fd

0d+1
...

0n−1



T

, (27)

as the matrix in Equation 26 is a square and invertible Vandermonde matrix.

Let’s denote the inverse of this Vandermonde matrix by

V −1 = Van−1
n×n (x0, . . . , xn−1) =


λ0,0 . . . λ0,d . . . λ0,n−1
λ1,0 . . . λ1,d . . . λ1,n−1
λ2,0 . . . λ2,d . . . λ2,n−1

...
...

... . . . ...
λn−1,0 . . . λn−1,d . . . λn−1,n−1


n×n

.
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Further, we have

F ·


λ0,0 . . . λ0,d . . . λ0,n−1
λ1,0 . . . λ1,d . . . λ1,n−1
λ2,0 . . . λ2,d . . . λ2,n−1

...
...

... . . . ...
λn−1,0 . . . λn−1,d . . . λn−1,n−1


n×n

=



f0
f1
f2
...
fd

0d+1
...

0n



T

(28)

F ·


λ0,0 . . . λ0,d 0 . . . 0
λ1,0 . . . λ1,d 0 . . . 0
λ2,0 . . . λ2,d 0 . . . 0

... . . . ...
... . . . ...

λn−1,0 . . . λn−1,d 0 . . . 0


n×n

=



f0
f1
f2
...
fd

0d+1
...

0n



T

(29)

F ·


λ0,0 . . . λ0,d

λ1,0 . . . λ1,d

λ2,0 . . . λ2,d

... . . . ...
λn−1,0 . . . λn−1,d


n×(d+1)

=


f0
f1
f2
...
fd


T

(30)

(31)

where

M1 =


λ0,0 . . . λ0,d

λ1,0 . . . λ1,d

λ2,0 . . . λ2,d

... . . . ...
λn−1,0 . . . λn−1,d


n×(d+1)

.

Since

v =


f0
f1
f2
...
fd


T

· U,
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we have

F ·M1 =


f0
f1
f2
...
fd


T

(32)

F ·M1 · U =


f0
f1
f2
...
fd


T

· U = v. (33)

Next, we transform Equation 8 as follows,


f̃0
f̃1
f̃2
. . .

f̃ d
2


T

=


v0
. . .
vt−1

...
v d

2



T

·



1 1 1 . . . 1
u0 u1 u2 . . . u d

2
u2

0 u2
1 u2

2 . . . u2
d
2...

...
... . . . ...

u
d
2
0 u

d
2
1 u

d
2
2 . . . u

d
2
d
2



−1

( d
2 +1)×( d

2 +1)

(34)



f̃0
f̃1
f̃2
. . .

f̃ d
2

0 d
2 +1
...

0d



T

=



v0
. . .
vt−1

...
v d

2

v d
2 +1
...
vd



T

·




 0 . . . 0

U−1
( d

2 +1)×( d
2 +1)

... . . .
...

0 . . . 0
0 . . . 0 0 . . . 0
... . . .

...
... . . .

...
0 . . . 0 0 . . . 0


(d+1)×(d+1)

. (35)

Finally, we combine Equation 33 and Equation 35 and get

f̃0
f̃1
f̃2
. . .

f̃ d
2

0 d
2 +1
...

0d



T

= F ·M1 · U ·M2, (36)

where

M2 =




 0 . . . 0

U−1
( d

2 +1)×( d
2 +1)

... . . .
...

0 . . . 0
0 . . . 0 0 . . . 0
... . . .

...
... . . .

...
0 . . . 0 0 . . . 0


(d+1)×(d+1)

.



Sebastian Faust, Maximilian Orlt, Kathrin Wirschem and Liang Zhao 47

Note that we can change the matrix multiplication order of the right-hand side of
Equation 36 to F · (M1 · (U ·M2)) because of the associativity of matrix multiplication.
Let’s denote the multiplication result of (M1 · (U ·M2)) by M3. It is easy to verify that
M3 has the following form,

M3 =


M0,0 . . . M0, d

2
0 . . . 0

M1,0 . . . M1, d
2

0 . . . 0
M2,0 . . . M2, d

2
0 . . . 0

... . . . ...
... . . . ...

Mn−1,0 . . . Mn−1, d
2

0 . . . 0


n×(d+1)

. (37)

Then we have

f̃0
f̃1
f̃2
. . .

f̃ d
2

0 d
2 +1
...

0d



T

=


F0
F1
F2
. . .
Fn−1


T

·


M0,0 . . . M0, d

2
0 . . . 0

M1,0 . . . M1, d
2

0 . . . 0
M2,0 . . . M2, d

2
0 . . . 0

... . . . ...
... . . . ...

Mn−1,0 . . . Mn−1, d
2

0 . . . 0


n×(d+1)

(38)


f̃0
f̃1
f̃2
. . .

f̃ d
2


T

=


F0
F1
F2
. . .
Fn−1


T

·


M0,0 . . . M0, d

2
M1,0 . . . M1, d

2
M2,0 . . . M2, d

2... . . . ...
Mn−1,0 . . . Mn−1, d

2


n×( d

2 +1)

. (39)

We denote matrix 
M0,0 . . . M0, d

2
M1,0 . . . M1, d

2
M2,0 . . . M2, d

2... . . . ...
Mn−1,0 . . . Mn−1, d

2


n×( d

2 +1)
by MF →f̃ which is the matrix for the linear transformation in Equation 9. In the following
text, we omit the subscript of MF →f̃ and use M instead when it is clear from the context.

A.3 [FY92] Matrix Transformation
To obtain the matrix corresponding to the MultBGW Gadget, we can proceed similarly to
the degree reduction matrix for SplitRed presented in Supplementary Material A.2, using
2d and d instead of d and d/2.

A.4 Permutation Matrix Transformation
We describe how to get the n × (d+ 1) matrix MF →f̃ . Following the same steps as in
Supplementary Material A.2 we get a n× (d+ 1) matrix M1 such that

F ·M1 = v. (40)
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Next, we transform Equation 8 as follows, f̃0
...
f̃d


T

= v · U ′−1
, (41)

where U ′−1 = Van−1
(d+1)×(d+1) (u′

0, . . . , u
′
d).

Finally, we combine Equation 40 and Equation 41 and get f̃0
...
f̃d


T

= F ·M1 · U ′−1
, (42)

where f̃ =
(
f̃0 . . . f̃d

)
are the coefficients of polynomial f̃ (X), that are used to generate an-

other n packed secret shares F ′ =
(
F ′

0, . . . , F
′
n−1
)

at support points u′ = (u′
0, u

′
1, . . . , u

′
d).

A.5 Recombination Matrix Transformation
We begin to explain the construction of the Recombination Matrix with the help of a
simple example. Assume we consider m = 2 input sharings F (0) =

(
F

(0)
i

)
i∈[n]

that embeds

the secret v(0) and F (1) =
(
F

(1)
i

)
i∈[n]

embedding v(1). We know that

F (0) = v(0) · U−1 · V,

where U−1 denotes the inverse of the Vandermonde matix corresponding to (u0, . . . , ud)
and V denotes the Vandermonde matrix with respect to (x0, . . . , xn−1). Similarly,

F (1) = v(1) · U−1 · V.

For simplicity, we set M = U−1 · V . If we now want to obtain shares F ′ embedding the
secret v′ =

(
v

(0)
0 , v

(1)
1 , v

(0)
2 , . . . , v

(0)
n−1

)
, we can consider

v′ =
(
v

(0)
0 , v

(1)
1 , v

(0)
2 , . . . , v

(0)
n−1

)
=
(

n−1∑
i=0

F
(0)
i ·M−1

0,i ,

n−1∑
i=0

F
(1)
i ·M−1

1,i ,

n−1∑
i=0

F
(0)
i ·M−1

2,i , . . . ,

n−1∑
i=0

F
(0)
i ·M−1

n−1,i

)

=
(

F (0),F (1)
)
·



M−1
0,0 0 M−1

0,2 . . . M−1
0,d

M−1
1,0 0 M−1

1,2 . . . M−1
1,d

...
...

... . . . ...
M−1

n−1,0 0 M−1
n−1,2 . . . M−1

n−1,d

0 M−1
0,1 0 . . . 0

...
...

... . . . ...
0 M−1

n−1,1 0 . . . 0


(n·m)×(d+1)

=
(

F (0),F (1)
)
·M ′

Please recall that we argued that the inverse of M does exist in Supplementary Material A.
We achieved a reconstruction of the secret v′. Now, we need to reshare our new secret.
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We can do so by calculating:

F ′ = v′ · U−1 · V

=
(

F (0),F (1)
)
·M ′ · U−1 · V

=
(

F (0),F (1)
)
·M(F (0),...,F (1))→F ′

This idea can be generalized by considering m input sharings F (0), . . .F (m−1) and an
(n ·m)× (d+ 1) matrix M ′ that consists of columns of M and 0 entries. Thus, we only
need to carefully choose where to put the columns of M and columns containing 0 to
reconstruct the desired secret.

Furthermore, we can also multiply the resulting matrix M(F (0),...,F (1))→F ′ with a
permutation matrix (cf. Supp. A.4), to obtain a resharing together with a permutation.

A.6 Correctness of Table 4
In this section, we give a more detailed description of our instantiations of Algorithm 5,
while keeping the matrices derived in the previous sections in mind.

Lemma 16. Algorithm 5 is correct for all instantiations of ℓφ0,...,φd

i,j (·, . . . , ·) shown in
Table 4 when using n > 2d shares and polynomials of degree d.

Proof. We aim to show that the functionality as denoted in Table 4 is correct when inserting
ℓφ0,...,φd

i,j as specified in Table 4 into Algorithm 5. For one specific j, over the iteration of i,
we obtain

Hj =
n−1∑
i=0

ℓφ0,...,φd

i,j

(
F

(0)
i , . . . , F

(m−1)
i

)
+
(

0, . . . , 0,
n−1∑
i=0

ri,k, . . . ,

n−1∑
i=0

ri,(n−1)

)
·Mj ,

where Mj denotes the j-th column of M .
For correctness, we need to consider the first term of this equation, since the latter one is
the j-th share of the sum of n zero encodings.

• RefreshLT. When considering one sharing, (Fi)i∈[n], as input and setting ℓφ0,...,φd

i,j =
Ii,j as denoted in the table, we obtain

Hj = Fj +
(

0, . . . , 0,
n−1∑
i=0

ri,k, . . . ,

n−1∑
i=0

ri,(n−1)

)
·Mj .

Thus, if (Fi)i∈[n] is a masking of (v0, . . . , vk−1, rk, . . . , rn−1), Algorithm 5 outputs a
masking of (v0, . . . , vk−1, r

prime
k , . . . , rprime

n−1 ), as desired.
• Permutation. Similar to RefreshLT, we only consider one input sharing and obtain

Hj = λ
(P)
j,i +

(
0, . . . , 0,

n−1∑
i=0

ri,k, . . . ,

n−1∑
i=0

ri,(n−1)

)
·Mj .

where λ(P)
j,i is calculated as described in the previous paragraph. We can easily verify

that λ(P)
j,i permutes the underlying secrets v of the sharing (Fi)i∈[n] to v′. Since we

only add zero encodings, (Hi)i∈[n] is an encoding of v′ as well.
• Recombination. When choosing the values λ(R)

j+ln,i according to the description in
Supp. A.5, we obtain desired gadged, using the same reasoning as for the Permutation
gadget.
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• MultBGW. Within this gadget, we consider two input encodings, namely
(
F

(0)
i

)
i∈[n]

and
(
F

(1)
i

)
i∈[n]

. When constructing λ(DegRed)
j,i as described in the previous section,

we obtain the desired multiplication and degree reduction.

B Probe-Resilience
For most of the proofs in this section, we follow the proof ideas in [BEF+23] and [ABEO24]
with minor modifications.

The Linear Transformation Gadget is SNI. In this section, we show that gadget GadgetLT
(cf. Alg. 5) for general linear transformations already satisfies the SNI property.

Lemma 17. GadgetLT is t-SNI when using n shares and polynomials of degree d > t−1+k.
When considering MultBGW, we need to consider n > 2d shares and polynomials of degree
d.

Proof. We proceed similarly to the proof presented in [ABEO24, Lem. 8].
We consider t1 internal probes and t2 output probes, such that t1 + t2 < t. First, we define
the input sets I0, . . . , Im−1 of size at most t1. Afterwards, we construct a simulator that
can perfectly simulate all t probes, while only using elements of I0, . . . , Im−1.
The sets I0, . . . , Im−1 are dependent on the intermediate variables that are probed and
constructed as follows:

• If F (0)
i , . . . , F

(m−2)
i or F (m−1)

i are probed, add i to I0, . . . , Im−2 or Im−1, respectively.
• If any value is probed during the computation of ℓφ0,...,φd

i,j

(
F

(0)
i , . . . , F

(m−1)
i

)
, add

i to I0, . . . , Im−2 and Im−1.
• If an element rj in loop i (an element of ZEncd

n), for simplicity denoted as ri,j ,
some intermediate value of ZEncd

n (denoted as H̃k
i,j), k ∈ [d], or the sum with the

share-wise transformation (denoted as H̃d
i,j) is probed, add i to I0, . . . , Im−2 and

Im−1.
Since we add at most one index to I0, . . . , Im−2 and Im−1 for each internal probe, we
obtain |I0| ≤ t1, . . . , |Im−2| ≤ t1 and |Im−1| ≤ t1.

Now, we construct the simulator. In case a value ri,j is needed for simulation, it will
be sampled uniformly at random by the simulator and thus be fixed.

1. In case F (0)
i , . . . , F

(m−2)
i or F (m−1)

i are probed, we can perfectly simulate them, since
for any i ∈ Il, l ∈ [m], the share F l

i is a known value. Moreover, if an internal
value of ℓφ0,...,φd

i,j

(
F

(0)
i , . . . , F

(m−1)
i

)
is probed, we can perfectly simulate this value,

because i ∈ I0,∪ · · · ∪ Im−1 and ℓφ0,...,φd

i,j

(
F

(0)
i , . . . , F

(m−1)
i

)
is only dependent on

the public values F (0)
i , . . . , F

(m−1)
i .

2. If H̃k
i,j , k ∈ [d] is probed, the simulator fixes the necessary ri,j and calculates

H̃k
i,j =

∑k
l=0 ri,l ·Mj,l. Unknown ri,l are sampled uniformly at random, resulting in

a perfect simulation.

3. The simulation of H̃d
i,j depends on H̃d−1

i,j and ℓφ0,...,φd

i,j

(
F

(0)
i , . . . , F

(m−1)
i

)
. In case

H̃d−1
i,j has not been calculated before, we simulate it as described in 2.. Moreover,

since i ∈ I0,∪ · · ·∪ Im−1, the values F (0)
i , . . . , F

(m−1)
i are known and we can simulate

ℓφ0,...,φd

i,j

(
F

(0)
i , . . . , F

(m−1)
i

)
. This results in a perfect simulation of H̃d

i,j .
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4. If Hi,j is probed, we consider Hi,j =
∑i

k=0 H̃
d
k,j = Hj,l +

∑i
k=l+1 H̃

d
k,j . If l < i has

been probed before, we simulate only H̃d
k,j , l < k ≤ i, otherwise we consider all

elements H̃d
k,j .

If ℓφ0,...,φd

k,j

(
F

(0)
k , . . . , F

(m−1)
k

)
are known for all necessary k, H̃d

k,j can be perfectly
simulated similar to case 3.
Otherwise, there is at least one unknown ℓφ0,...,φd

k,j

(
F

(0)
k , . . . , F

(m−1)
k

)
. If this is the

case, rk,l has not been probed for l ∈ [d+ 1− k]. Recall that the rk,l are uniformly
random, thus

(
H̃d

k,j

)
j∈[n]

is d+ 1− k-wise independent. Due to our threshold t, Hj,i

can be simulated by an element which is chosen uniformly at random.
This finishes the proof since all elements can be perfectly simulated.

Lemma 18. The modified SplitRed is (d+ 1− k)− NI.

Proof. Let us consider three groups of probes
• Group K: All probes of the set K = (

⋃
l∈[n] Kl) ∪ (

⋃
l∈[n/2] K

′
l) with

– Kl contains the internal values in
(
g̃l

i

)
i∈[n] ← ZEncd

n and
(
g̃l

i

)
i∈[n]

– K ′
l contains the internal values of

(
ĝl

i

)
i∈[n/2] ← ZEncn/2

n and
(
ĝl

i

)
i∈[n/2]

• Group I: All probes of the set I =
⋃

i∈[n] Il, where Il = {Fl,F l
0, . . . ,F l

n−1,F ′l
0 , . . . ,F ′l

n−1}
• Group J : All probes of the set J =

⋃
i∈[n](J ′

i ∪J ′′
i ), where J ′

i = {F ′(0)
i , . . . , F

′(n/2−1)
i }

and J ′′
i = {F ′′(0)

i , . . . , F
′′(n/2−1)
i }

We begin by considering the cases where a random value gl
i can not be generated uniformly

at random due to probes in K.
• D.Case 1: If we have a probe in Kl and K ′

l with l < n/2, then g̃l
i and ĝl

i are dependent
of these probes. Moreover, gl

i = g̃l
i + ĝl

i is dependent on these probes as well.
• D.Case 2: If we have a probe in Kl and K ′

l , l > n/2, then ĝ
l−n/2
i and g̃l

i are not
independent of the probes. Hence gl

i = g̃l
i − ĝ

l−n/2
i is dependent on these probes as

well.
• D.Case 3: If we have a probe in K ′

l , but not in Kl or Kl+n/2 (otherwise, we are in
Case 1 or Case 2), then ĝl

i is dependent on this probe. Hence, gl
i and g

l+n/2
i are d′

wise independent, where n/2 + 1− k ≤ d′ < d+ 1− k, since gl
i is only n/2 + 1− k-wise

randomized by
(
g̃l

i

)
i∈[n], and g

n/2+l
i by

(
g̃

n/2+l
i

)
i∈[n]

, respectively. Following the
argument of [BEF+23], we only need to consider one of the two encodings and can
assume the other one consists of uniform random values.

Next, we need to construct the input set S for the Simulator. Again, we discuss
the cases one by one.

• Group K: we only need to consider the dependency cases, as otherwise,
(
gl

i

)
i∈[n] can

still be generated uniformly at random. Hence, we look at D.Case 1-3, where
(
gl

i

)
i∈[n]

is not d− k + 1-wise independent. If there are at least two probes in Kl,Kl+n/2,K
′
l ,

where l < n/2, we add Fl to S
S ← S ∪ {Fl}

Note that this covers D.Case 1 and D.Case 2. The third case is considered later
together with group J. Moreover, observe that for each probe, the simulator gets at
most one input.

• Group I: If there is a probe in Il, we add Fl to S

S ← S ∪ {Fl}

Again, we add at most one element per probe in I.
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• Group J : We need to consider the cases, where
(
gl

i

)
i∈[n] and

(
g

l+n/2
i

)
i∈[n]

are
not d+ 1− k wise independent. (Otherwise, the elements are a sum of a constant
multiplication with an input and a sum to a random value unknown to the adversary.)

– If there is a probe in K ′
l but not in Kl or Kl+n/2 (D.Case 3) and there are more

than d/2 + 1− k probes in
⋃n/2−k

i=0 (Ii ∪ J ′
i). Then add Fl to S.

S ← S ∪ {Fl}

– Similarly for Ii+n/2 ∪ J ′′
i , i.e. If there is a probe in K ′

l but not in Kl or Kl+n/2

(D.Case 3) and there are more than d/2 + 1− k probes in
⋃n/2−k

i=0
(
Ii+n/2 ∪ J ′′

i

)
.

Then add Fl to S.
S ← S ∪ {Fl}

Note that we add at most one element per probe in Ji.
The simulator obtains the input set S. Now, we explain group-wise how the simulator can
simulate all necessary values.
Simulator with input set S

1. Group K: If
(
gl

i

)
i∈[n] is not d− k + 1-wise independent (D.Case 1-3), the simulator

simulates the gl
i as follows.

• D.Case 1: If there are two probes in Kl,Kl+n/2 and K ′
l , together with a probe

in Il, where l < n/2, then the simulator simulates gl
i = g̃l

i + ĝl
i by computing g̃j

i

and ĝj
i as mentioned in the algorithm.

• D.Case 2: If there are two probes in Kl,Kl+n/2 and K ′
l , together with a probe in

Il+n/2, where l < n/2, the simulator simulates gl+n/2
i = g̃

l+n/2
i − ĝl

i by computing
the distribution of g̃j+n/2

i and ĝj
i .

• D.Case 3: If there is a probe in K ′
l and not in Kl not Kl+n/2. If there are

more than d/2− k+ 1 probes in the set
⋃n/2−1

i=0 ((Ii ∪ J ′
i) the simulator simulates

gl
i = g̃l

i + ĝl
i again the distribution of g̃j

i and ĝj
i . Similarly, if there are more

than d/2 − k + 1 probes in the set the set
⋃n/2−1

i=0
(
(Ii+n/2 ∪ J ′′

i

)
the simulator

calculates gl+n/2
i = g̃

l+n/2
i + ĝl

i.
Note that all required g̃j

i and ĝj
i and all remaining probes in K can be simulated

according to the algorithm.
2. Group I: For all probes in Il, we have Fl ∈ S by construction. Hence, all elements,
Fl,F i

l , or F ′i
l , for all i ∈ [n] can be calculated according to the algorithm. In more

detail, for any i ∈ [n], l ∈ [n] if there was a probe in Kl, the simulator already
simulated gl

i and hence can calculate F ′l
i = λ̂i

l · Fl and F l
i = F ′l

i + gl
i for l < n/2, as

well as F ′l
i = λ̂i

l · Fl and F l
i = F ′l

i − gl
i for l ≥ n/2. Thus, all together, the simulator

can simulate all elements in I.
3. Group J :

• All elements in J ′ are sums of the form λi
l · Fl + gl

i, l < n/2.
– In case gl

i is not uniformly random due to probes in K or L, the simulator
already calculated the corresponding values gl

iand holds Fl. Hence, the
simulator can perfectly simulate λi

l · Fl + gl
i.

– Otherwise, if gl
i is uniformly random, the element λi

l · Fl + gl
i is a shift of a

random number and thus is distributed uniformly at random as well. Since
gl

i is unknown to the adversary in this case, the simulator can generate the
desired value uniformly at random.

• All elements in J ′′ are sums of the form λi
l ·Fl−gl

i, l ≥ n/2. And we can proceed
completely analogous to the previous step.

Note that the simulator can simulate any d− k + 1 probes P with at most d− 1 + k input
values. Any probe in SplitRed is contained in Group K, I, or J . By definition of S, we
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thus get |S| ≤ P ≤ d− t+ 1.
It is left to show that S can perfectly simulate all values in P only using S.

• Group K: All probes in K are independent of the input and can be simulated
perfectly.

• Group I: Fl ∈ S for any probe in Il. Any element in Il is an intermediate value
that can be simulated by the value Fl together with the random values

(
gl

i

)
i∈[n].

The values
(
gl

i

)
i∈[n] have been simulated as described in Step 1 or can be chosen

uniformly at random.
• Group J :

– Simulating all elements in J ′ is equivalent to simulating all values (λ̂i
lFl) + gl

i,
with l ∈ [n/2]. Note that by definition of S, if there is a probe in J ′

l , Fl ∈ S.
As denoted in Step 3, either gl

i has already been calculated in Step 1 or Step 2.
Since Fl is known as well, (λ̂i

lFl) + gl
i can be simulated perfectly. Otherwise, we

can consider gl
i as uniform random (the explanation follows).

– Simulating all elements in J ′′ is completely analogous to the simulation of all
elements in J ′.

Note that if gl
i was not generated in Step 1, we can consider it as uniformly random. The

reason is as follows. Recall our threshold of d− k + 1 probes. The Simulator never uses
more than d + 1 − k random values of each encoding, and d + 1 − k values in

(
gl

i

)
i∈[n]

(
(
g

l+n/2
i

)
i∈[n]

) are still independent and uniform random, if there is no probe in K ′
l and

Kl (or K ′
l and Kl+n/2, respectively). In D.Case 3, the simulator uses at most d/2 values

of at least one of the encodings. Thus at most one of the encodings in only one of the
encodings

(
gl

i

)
i∈[n] ,

(
g

l+n/2
i

)
i∈[n]

leads to dependent random values. This case is covered

in Step 1 in the simulator, and the simulator has all dependent (and required) gl
i.

Theorem 2 ([BEF+23, Theorem 12]). A (d+ 1− k) probing secure composition with
(d+ 1− k)-NI and (d+ 1− k)-SNI gadgets is d+1−k

2 region probing secure if each gadget
is refreshed using Refresh (cf. Alg. 6), and output refreshed sharings.

Proof. The only difference to [BEF+23, Theorem 12] is that we modified gadget Refresh
(cf. Alg. 6). Hence it remains to prove that our modified Refresh satisfies (d+ 1− k)-SNI,
which is already proved in Lemma 10.

C Fault-Invariance
Theorem 3 (Similar to Theorem 17 [BEF+23]). All gadgets of our compiler are fault-
invariant with respect to F+.

Proof. In a nutshell, all affine transformation of secret shares (e.g., share-wise addition,
multiplication with constant values) are fault-invariant with respect to F+ as the corre-
sponding operations are associative. Hence such faults are independent from the inputs
and can be pushed to inputs or outputs.

D Fault-Resilience
Fault-Resilience of ZEnc (cf. Alg. 3). In order to guarantee fault-resilience, we show that
every change to the output of ZEnc (cf. Alg. 3) introduced by s internal faults can also be
achieved by s direct faults on the output. For j = k, . . . , d, we denote the value

∑l
j=k rj ·Zj,i
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by ei [l]. Now, an adversary can use the faults to fault a set J ⊆ {k, . . . , d+ 1− k} of
random values, i.e., rj is faulted to rj + ∆j for j ∈ J . Furthermore, they can fault a set
I ⊆ {0, . . . , n− 1}×{k, . . . , d+ 1− k} of values ei [l], i.e., these values are now ei [l] + ∆i,l.
For two sets J and I, let DJ,I be the output distribution of ZEnc (cf. Alg. 3) if the values
are faulted according to these fault sets.
Lemma 19 ([BEF+23, Lem. 6]). For all J ⊆ {k, . . . , d+ 1− k} and all I ⊆ {0, . . . , n− 1}×
{k, . . . , d+ 1− k}, we have DJ,I ≡ D∅,I

Proof. For (ei)i∈[n] ←$DJ,I , it is easy to see that

ei =
∑
j /∈J

rj · Zj,i +
∑
j∈J

((rj + ∆j) · Zj,i) +
∑

(i,l)∈I

∆i,l.

Let r′
j with r′

j = rj for j /∈ J and r′
j = rj + ∆j for j ∈ J , then we get

ei =
∑

j∈[n]

r′
j · Zj,i +

∑
(i,l)∈I

∆i,l.

Since ri is i.i.d., it holds r′
j ≡ rj , and hence

ei ≡
∑

j∈[n]

rj · Zj,i +
∑

(i,l)∈I

∆i,l,

which implies the statement.

Lemma 20 ([BEF+23, Lem. 7]). For all I ⊆ {0, . . . , n− 1} × {k, . . . , d+ 1− k}, there
exist a sharing (fi)i∈[n] with |supp (fi)i∈[n] | ≤ |I| such that D∅,I = D∅,∅ + (fi)i∈[n].

Proof. For (ei)i∈[n] ←$D∅,I , we have

ei =
∑

j∈[n]

rj · Zj,i +
∑

(i,l)∈I

∆i,l.

Let’s define fi =
∑

(i,l)∈I ∆i,l, which means that (ei)i∈[n]−(fi)i∈[n] is distributed according
to D∅,∅. Furthermore, we have |supp (fi)i∈[n] | ≤ |I|.

Using the above lemmas, we can derive the subsequent lemma on the fault-resilience of
ZEncd

n (cf. Alg. 3).
Lemma 21 ([BEF+23, Thm. 18]). Every change to the output of ZEncd

n (cf. Alg. 3)
introduced by s internal faults can be achieved by s direct faults on the output.

Fault-Resilience of sZEncd
n (cf. Alg. 4). Because sZEncd

n (cf. Alg. 4) is only a share-wise
addition of ZEncd

n (cf. Alg. 3), we have the following lemma for sZEncd
n (cf. Alg. 4).

Lemma 22 ([BEF+23, Thm. 19]). Every change to the output of sZEncd
n (cf. Alg. 4)

introduced by s internal faults can be achieved by s direct faults on the output.

Proof. This Lemma follows directly from the fact that sZEncd
n consists of share-wise

addition of zero encryption ZEncd
n. Note that for share-wise addition internal faults can

be pushed to the output by associativity of the operation.

Fault-Resilience of Refresh (cf. Alg. 6)

Lemma 23 ([BEF+23, Thm. 20]). The gadget Refresh (cf. Alg. 6) is e-fault-robust
(cf. Def. 3) w.r.t. F+.

Proof. Because Refresh (cf. Alg. 6) satisfies the fault-invariance (cf. Def. 7), each fault
can be pushed to an output which satisfies e-fault-robustness (cf. Def. 3) w.r.t. F+.
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Fault-Resilience of SplitRed (cf. Alg. 7). Before proving the fault-robustness of SplitRed
(cf. Alg. 7), we first consider two scenarios in which faults can happen in SplitRed
(cf. Alg. 7).

1. sinput faulted inputs without faults in SplitRed (cf. Alg. 7). From Lemma 11, we have
shown that the faulted output F̃ ′

i , F̃ ′′
i of SplitRed (cf. Alg. 7) satisfy the following

relation:

F̃ ′
i + F̃ ′′

i =
{
F ′

i + F ′′
i + fn−i−1 if 0 ≤ i < e

F ′
i + F ′′

i if e ≤ i ≤ n− 1
,

where fl denotes the l-th coefficient of polynomial f (X), and f (X) is used to
generate the inputs (Fi)i∈[n] for SplitRed (cf. Alg. 7). More specifically, the faulted
result caused by sinput (that is smaller than e) input faults can be seen as the
coefficients of xd+1, xd+2, . . . , xn−sinput that is generated by the random experiment
defined in the Def. 3.

2. Non-faulted inputs with sint faults in SplitRed (cf. Alg. 7). Because SplitRed
(cf. Alg. 7) satisfies the fault-invariance (cf. Def. 7), all faults introduced during the
computation by the adversary can be pushed either into the inputs or the outputs of
the gadget.

Based on the above discussion, we obtain the following lemma.

Lemma 24 ([BEF+23, Thm. 21]). If the (faulted) input to SplitRed (cf. Alg. 7) has
degree at least n− sinput, the (faulted) outputs have degree at least n− sint − sinput, if sint
faults are performed during the computation.

Proof. Based on the fact that each fault (except the input faults) can only affect one single
output share, sint faults will cause the degree of output shares to be reduced at most sint.

Fault-Resilience of SWComp (cf. Alg. 8) and Multk−Input (cf. Alg. 9). Since both
gadgets satisfy the fault-invariance (cf. Def. 7), Lemma 24 also holds for them.

Lemma 25 ([ABEO24, Section 5.4]). Multk−Input (cf. Alg. 9) is e-f -robustness.

Proof. The only difference to the proof in [ABEO24, Section 5.4] is that we adapted
the gadgets SplitRed and Refresh (used in SWComp). Hence, it remains to prove that
SplitRed and Refresh satisfy the necessary security requirements, which are already proven
in Lemma 24 and Lemma 23.

E LaOla-Based PSS Compiler
In this section, we show that our LaOla-based PSS Compiler using packed secret shar-
ing [FY92] introduces only mild changes to the security properties compared to the original
LaOla compiler in [BEF+23], which only supports Shamir’s secret sharing [Sha79].

As shown in Lemma 26, we can use our multiplication gadget Multk−Input (cf. Alg. 9),
refresh gadget Refresh (cf. Alg. 6), and the share-wise addition SWAdd (cf. Alg. 1) and
multiplication gadget SWMult (cf. Alg. 2) to build a circuit compiler secure against
additive fault F+ using n = d+ e+ 1 shares.

Lemma 26 (Additive LaOla-Pack-Complier [BEF+23, Thm. 8]). For any d, e ∈ N there
is a circuit compiler that is given an arithmetic circuit C over F and outputs an arithmetic
circuit C′ over Fn where n = d+ e+ 1 with

1. C′ has the same functionality as C,
2. T [C′] is probing secure for any T ∈ A (F+) and
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(a) up to (d+ 1− k) probes in T [C′] (threshold probing security), or
(b) up to (d+ 1− k) /2 probes in every gadget of T [C′] (region probing security).

3. C′ is e-fault-robust (cf. Def. 3) with respect to F+.

Furthermore, using [BEF+23, Cor. 2], the above LaOla-Pack-Complier that is only
secure against the additive fault F+ can also be extended to resist the wire-independent
fault F ind. This is shown in Lemma 27.

Lemma 27 (General LaOla-Pack-Complier [BEF+23, Thm. 8]). For any d, e ∈ N there
is a circuit compiler that is given an arithmetic circuit C over F and outputs an arithmetic
circuit C′ over Fn where n = d+ e+ 1 with

1. C′ has the same functionality as C,
2. T [C′] is probing secure for any T ∈ A (F+) with |T | < e and

(a) up to (d+ 1− k − e) probes in T [C′] (threshold probing security), or
(b) up to (d+ 1− k) /2 probes in every gadget of T [C′] when the faults are counted

as probes (region probing security).
3. T [C′] is (d+ 1− k − e) probing secure for any T ∈ A

(
F ind) with |T | < e

4. C′ is e-fault-robust (cf. Def. 3) with respect to F ind.

The only difference between our packed LaOla compiler and the original compiler in
[BEF+23] is that we have modified the multiplication gadget Multk−Input (cf Alg. 9) and
refresh gadget Refresh (cf. Alg. 6). More importantly, our modified gadgets satisfy all the
necessary security requirements (cf. Sec. 3 and cf. Sec. 4) as the original gadgets [BEF+23].
Hence, the correctness and security of Lemma 26 and Lemma 27 can be proven as in
[BEF+23].

F Building Blocks for Fault Detection
Recall that we would usually detect faults right before decoding. However, the following
fault detection FaultDetect (cf. Alg. 13) algorithm can also be used in case one aims
to detect errors during circuit operation. The idea of FaultDetect can be summarized
as follows. We hide the secrets embedded in our input polynomial f(X) by adding a
completely random polynomial of degree d. (Namely, we compute a refresh, but instead of
using a zero-encoding, we use an encryption of k random values, r0, . . . , rk−1.) Then, we
recalculate the highest coefficients fi, i ∈ {d+ 1, . . . , n− 1} of f(X), using our extended
matrix V , as presented in Section A.1. Now, we check if any of these coefficients are zeros.
We abort if a coefficient is non-zero, otherwise we continue. This procedure is repeated e
times.

We begin by providing an algorithm RandomEncd
n (cf. Alg. 11) to create degree-d

random polynomials. In order to guarantee SNI, we use the algorithm Refresh (cf. Alg. 6)
as a baseline and only change the underlying ZEnc (cf. Alg. 3) into RandomEncd

n to create
random polynomials. Please note that it is sufficient that FaultDetect (cf. Alg. 13) is

Algorithm 11 RandomEncd
n for n = d+ e+ 1 and k ≤ d

Output : Randomized sharing (gi)i∈[n] of random vector vrandom =
(r0, . . . , rk−1, rk, . . . , rd) ←$Fd+1.

1 initialize (gi)i∈[n]
2 (r0, . . . , rd) ←$Fd+1

3 for i ∈ [n] do
4 for j ∈ [d+ 1] do
5 gi ← gi ⊕ rjMj,i
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secure against an adversary that inserts at most e − 1 faults, since the fault injection
threshold is e and an adversary must have faulted at least one element previously to obtain
a polynomial of degree > d.

Since RandomEncd
n is very similar to sZEnc (except for not choosing zeros as secrets,

but random elements), Lemma 22 holds here as well.

Algorithm 12 RandomRefreshd
n for n = d+ e+ 1 and k ≤ d

Input : Degree-d shares of v = (v0, . . . , vd) as (Fi)i∈[n]
Output : A degree-d shares of a randomized v as (F ′

i )i∈[n]

1 initialize (yi)i∈[n]
2 for j ∈ [d+ 1− k] do
3 (gi)i∈[n] ← RandomEncd

n(cf. Alg. 11)
4 (yi)i∈[n] ← (yi)i∈[n] ⊕ (gi)i∈[n]
5 (Qi)i∈[n] ← (Fi)i∈[n] + (yi)i∈[n]
6 return (Qi)i∈[n]

Moreover, RandomRefreshd
n uses RandomEncd

n instead of ZEnc, but other than that,
it is exactly the same algorithm as Refresh (cf. Alg. 6). Lemma 22 holds for both, ZEnc
and RandomEncd

n, as the proof relies on the fact, that the shares (Ri)i∈[n] of ZEnc (resp.
RandomEncd

n) are d+ 1− k-wise independent, which is clearly the case. With the help of
Lemma 22, we can show that RandomRefreshd

n is frSNI.

Lemma 28 ([BEF+23, adapted from Theorem 17]). The RandomRefreshd
n gadget is

(d+ 1− k)-frSNI, w.r.t F+.

Proof. The proof is identical to the one of Lemma 10, as the only change to Refresh
(cf. Alg. 6) is the use of RandomEncd

n instead of ZEnc. However, all properties needed for
ZEnc within the proof of Lemma 10 are fulfilled by RandomEncd

n as well, since we rely on
the fact, that the shares (Ri)i∈[n] are d+ 1− k-wise independent, which is clearly the case,
because RandomEncd

n constructs a polynomial with d+ 1 uniformly random coefficients.
Note that an adversary is able to insert a fault to the coefficients. However, this only
results in a shift of a uniformly random value, which remains uniformly distributed.

Note that similar to [DN20], we assume the existence of an abort state ⊥ in FaultDetect
(cf. Alg. 13). In case such a state is not already implemented, we can create an abort flag
by using a global variable ⊥f ∈ {0, 1}e. This variable corresponds to a vector of size e and
is initially set to the all-zero vector. In case an error is detected (line 6), all entries of ⊥f

are set to 1. As there are e entries, the adversary can not fault all of them, in case he did
insert a previous fault. We begin by showing correctness under the existence of at most d
probes and e− 1 faults.

Lemma 29. Algorithm 13 outputs ⊥ if the degree of the polynomial P (X) underlying the
input shares (Fi)i∈[n] is greater than d+ 1− k, and an adversary can insert at most e− 1
faults.

Proof. We do the following e times. The algorithm begins by calculating shares of a
random polynomial of degree d, which are share-wise added to the input shares. If P (X)
had degree ≥ d, share-wise addition with a degree d polynomial does not change the
degree of the underlying polynomial. Further, due to robustness, the error detection is
independent of the underlying secret, meaning that RandomRefreshd

n does not have an
impact on the higher degree coefficients.
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Algorithm 13 FaultDetect
Input : Faulty shares (Fi)i∈[n], where fd, . . . , fn−1 are the coefficients of the underlying

polynomial
1 for k ∈ [e] do
2 (Gi)i∈[n] ← RandomRefreshd

n (F0, . . . , Fn−1)
3 for j ∈ [d+ 1, n] do
4 for i ∈ [n] do
5 f

(k)
j ← f

(k)
j +Gi · V −1

i,j

6 if f (k)
j ̸= 0 then

7 return ⊥

Then, we recalculate the highest coefficients fj , j ∈ [d + 1, n] as described in the
decryption, i.e. fj =

∑n−1
i=0 Gi · V −1

i,j , where (Gi)i∈[n] denotes our randomized shares.
All higher degree coefficients fj , j ∈ [d + 1, n] are calculated e times. Thus, if any

coefficient fj ̸= 0, j ∈ [d+ 1, n], the adversary can only fault e− 1 of the checks, but not e.
This means that the algorithm returns ⊥, if any of the coefficients was non-zero. In case
there exists no abort ⊥, we use a vector of size e to denote the abort. Namely, the vector
is initialized to the all zero vector. In case we would return ⊥, we instead set all elements
of the vector to 1. Hence, with a faulting threshold of e− 1 (as we assume the adversary
faulted already at least once to increase the degree of the polynomial), the adversary
cannot change all elements of the vector. If any element of the vector is non-zero, we set
the abort-flag.

Lemma 30. For a probing threshold of d + 1 − k, Algorithm 13 does not reveal any
information about the underlying secrets.

Proof. Due to the frSNI property of RandomRefreshd
n, the adversary does not learn

anything about the underlying secret within this part of the algorithm. Now, after
computing RandomRefreshd

n, the shares (Gi)i∈[n] cannot learn any information about the
secret anymore (with a probing threshold of d+1−k), since it embeds vi +

∑
j∈[d+1−k] r

(j)
i ,

where vi denotes the secret embedded in (Fi)i∈[n] and r(j)
i ∈ F are uniformly chosen values.

Further, due to robustness, the error detection is independent of the underlying secret,
meaning that RandomRefreshd

n does not have an impact on the higher degree coefficients
and the adversary cannot learn any information about the secrets from the higher degree
coefficients.

G Complexity Comparisons

G.1 Complexity Comparison for AES (e = t ∈ {1, . . . , 30})
In Table 7, we provide the randomness and computational complexity for t = e ∈
{1, . . . , 30}. We calculate the computational complexity of one round of AES-128 (that
takes 16 inputs, and each input is in the field F28) as follows: For duplicated Boolean
masking [FRSG22, FGM+23] that requires (t + 1) · (2e + 1) shares, we use the small
depth-16 circuit for AES S-Box from [BP12], as described by [FRSG22, FGM+23]. This
AES S-Box Boolean circuit has 34 AND gates, 90 XOR gates, and 4 XNOR gates. For other
AES operations (cf. [LMW+24]), e.g., AddRoundKey, ShiftRows and MixColumns,
they require 32 AND gates and 1220 XOR gates. In total, one round of AES-128 for 16
inputs needs 576 AND gates and 2660 XOR gates and 64 NOT gates. Then, based on
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complexity provided by [FRSG22, Tab. 2], we can compute the Boolean circuit complexity
for all the Boolean operations in one AES-128 round.

Please note that a crucial error correction component for achieving combined security in
the duplicated Boolean masking [FRSG22, FGM+23] is a sorting-based majority function.
Since no concrete sorting algorithm was chosen by [FRSG22, FGM+23], we choose insertion
sort (with asymptotic complexity O(n2) for n inputs), which is known to be efficient for a
small number of faults e (cf. [CLRS22, YYG11]).

In Table 7, we calculate the random bit complexity and Boolean circuit complexity for
different masking schemes. For the duplicated Boolean masking [FRSG22, FGM+23], we
consider t glitch-extended bit probes and e bit faults. For the original LaOla [BEF+23]
and the double-sharing compiler [ABEO24], and our LaOla-based PSS and BGW-based
PSS compiler, we calculate the total number of arithmetic (or field) operations (i.e.,
addition and multiplication in F28) for one AES-128 round (cf. Sec. 7). Then, we transform
these arithmetic operations into Boolean operations and calculate the necessary number of
Boolean gates (using the Boolean circuits from [BDST20]) as the computational complexity.
Here, we consider t probe and e fault on the field elements from F28 . We calculate the
random bit complexity in a similar manner.

Table 7: Random bit complexity and Boolean circuit complexity for one AES round of
our BGW-based PSS and LaOla-based PSS compiler, the original LaOla [BEF+23] and
the double-sharing compiler [ABEO24], and the Duplicated Boolean masking [FRSG22,
FGM+23] as in Figure 1. The security parameters are t probes and e faults with e = t
and e, t ∈ {1, . . . , 30}. The best complexity is marked in bold.
t = e

LaOla
[BEF+23]

Double-Sharing
[ABEO24]

LaOla-based PSS
(this work)

BGW-based PSS
(this work)

Dup. Boolean Mask
[FRSG22, FGM+23]

Rand Comp Rand Comp Rand Comp Rand Comp Rand Comp
1 4096 803760 5888 940576 53040 41981007 2448 4017967 1152 1260312
2 13312 2634320 12864 2499408 54328 44276032 5328 6840689 3456 12792860
3 27648 6262256 22528 5240896 55616 46631646 8640 10430860 6912 60716208
4 47104 12340368 34880 9507760 56904 49047847 12384 14871098 11520 197630676
5 71680 21521456 49920 15642720 58192 51524637 16560 20244025 17280 512023688
6 101376 34458320 67648 23988496 59480 54062014 21168 26632259 24192 1137670092
7 136192 51803760 88064 34887808 60768 56659980 26208 34118422 32256 2263032480
8 176128 74210576 111168 48683376 62056 59318533 31680 42785132 41472 4140661508
9 221184 102331568 136960 65717920 63344 62037675 37584 52715011 51840 7096596216
10 271360 136819536 165440 86334160 64632 64817404 43920 63990677 63360 11539764348
11 326656 178327280 196608 110874816 65920 67657722 50688 76694752 76032 17971382672
12 387072 227507600 230464 139682608 67208 70558627 57888 90909854 89856 26994357300
13 452608 285013296 267008 173100256 68496 73520121 65520 106718605 104832 39322684008
14 523264 351497168 306240 211470480 69784 76542202 73584 124203623 120960 55790848556
15 599040 427612016 348160 255136000 71072 79624872 82080 143447530 138240 77363227008
16 679936 514010640 392768 304439536 72360 82768129 91008 164532944 156672 105143486052
17 765952 611345840 440064 359723808 73648 85971975 100368 187542487 176256 140383983320
18 857088 720270416 490048 421331536 82752 99781942 110160 212558777 196992 184495167708
19 953344 841437168 542720 489605440 92336 114940485 120384 239664436 218880 239054979696
20 1054720 975498896 598080 564888240 102400 131508804 131040 268942082 241920 305818251668
21 1161216 1123108400 656128 647522656 112944 149548099 142128 300474337 266112 386726108232
22 1272832 1284918480 716864 737851408 123968 169119570 153648 334343819 291456 483915366540
23 1389568 1461581936 780288 836217216 135472 190284417 165600 370633150 317952 599727936608
24 1511424 1653751568 846400 942962800 147456 213103840 177984 409424948 345600 736720221636
25 1638400 1862080176 915200 1058430880 159920 237639039 190800 450801835 374400 897672518328
26 1770496 2087220560 986688 1182964176 172864 263951214 204048 494846429 404352 1085598417212
27 1907712 2329825520 1060864 1316905408 186288 292101565 217728 541641352 435456 1303754202960
28 2050048 2590547856 1137728 1460597296 200192 322151292 231840 591269222 467712 1555648254708
29 2197504 2870040368 1217280 1614382560 214576 354161595 246384 643812661 501120 1845050446376
30 2350080 3168955856 1299520 1778603920 229440 388193674 261360 699354287 535680 2176001546988

In addition to the random bit and Boolean circuit complexity in the binary field, we
also compute the randomness and computational complexity in the field F28 . Specifically,
in Figure 2 and Table 8, we compare the randomness complexity and computational
complexity for one AES round of our BGW-based PSS and LaOla-based PSS compiler,
and the original LaOla [BEF+23] and the double-sharing compiler [ABEO24].
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Figure 2: Randomness complexity (a) and computational complexity (b) for one AES
round of our BGW-based PSS compiler (⋄) and our LaOla-based PSS compiler (△), the
original LaOla [BEF+23] (□) and the double-sharing compiler [ABEO24] (◦). The security
parameters are t probes and e faults with e = t and e, t ∈ {1, . . . , 30}.

Table 8: Randomness complexity and computational complexity for one AES round
of our BGW-based PSS compiler and our LaOla-based PSS compiler, and the original
LaOla [BEF+23] and the double-sharing compiler [ABEO24]. The security parameters are
t probes and e faults for values in field F28 with e = t and e, t ∈ {1, . . . , 30}. The best
complexity is marked in bold.

t = e
LaOla

[BEF+23]
Double-Sharing

[ABEO24]
LaOla-based PSS

(this work)
BGW-based PSS

(this work)
Rand Comp Rand Comp Rand Comp Rand Comp

1 512 11256 736 12688 6630 510331 306 53915
2 1664 35720 1608 32904 6791 538256 666 88309
3 3456 82712 2816 67744 6952 566919 1080 131830
4 5888 159912 4360 121240 7113 596319 1548 185448
5 8960 275000 6240 197424 7274 626458 2070 250136
6 12672 435656 8456 300328 7435 657335 2646 326866
7 17024 649560 11008 433984 7596 688950 3276 416611
8 22016 924392 13896 602424 7757 721302 3960 520341
9 27648 1267832 17120 809680 7918 754393 4698 639029
10 33920 1687560 20680 1059784 8079 788222 5490 773647
11 40832 2191256 24576 1356768 8240 822789 6336 925168
12 48384 2786600 28808 1704664 8401 858093 7236 1094562
13 56576 3481272 33376 2107504 8562 894136 8190 1282802
14 65408 4282952 38280 2569320 8723 930917 9198 1490860
15 74880 5199320 43520 3094144 8884 968436 10260 1719709
16 84992 6238056 49096 3686008 9045 1006692 11376 1970319
17 95744 7406840 55008 4348944 9206 1045687 12546 2243663
18 107136 8713352 61256 5086984 10344 1210963 13770 2540713
19 119168 10165272 67840 5904160 11542 1392214 15048 2862442
20 131840 11770280 74760 6804504 12800 1590162 16380 3209820
21 145152 13536056 82016 7792048 14118 1805525 17766 3583820
22 159104 15470280 89608 8870824 15496 2039025 19206 3985414
23 173696 17580632 97536 10044864 16934 2291380 20700 4415575
24 188928 19874792 105800 11318200 18432 2563312 22248 4875273
25 204800 22360440 114400 12694864 19990 2855539 23850 5365481
26 221312 25045256 123336 14178888 21608 3168783 25506 5887171
27 238464 27936920 132608 15774304 23286 3503762 27216 6441316
28 256256 31043112 142216 17485144 25024 3861198 28980 7028886
29 274688 34371512 152160 19315440 26822 4241809 30798 7650854
30 293760 37929800 162440 21269224 28680 4646317 32670 8308192
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G.2 Complexity Comparison for Multiplication and Error Detection
We compare both the multiplication gadget and error-detection (or correction) gadget
with the duplicated Boolean masking scheme [DN20, FRSG22, FGM+23].

For the original LaOla compiler [BEF+23], double-sharing compiler [ABEO24], and
our LaOla-based PSS compiler and BGW-based PSS compiler, we first calculate the total
number of arithmetic operations (i.e., addition and multiplication operations in the field
F28) for single run of the multiplication gadget (cf. Alg. 9) embedding 16 secret values from
field F28 into one polynomial, which is the same as the case in the AES-128 evaluation
on field F28 (cf. Sec. 7). Then, we transform these arithmetic operations into Boolean
operations and calculate the necessary number of Boolean gates (using the Boolean circuits
from [BDST20]) as the computational complexity. Similarly, we compute the computational
complexity for our error-detection gadget (cf. Alg. F).

For the duplicated Boolean masking [DN20, FRSG22, FGM+23], we calculate the total
number of Boolean gates (e.g., AND and XOR gates) for 16× (corresponding to 16 secret
bits) runs of the multiplication gadget ([DN20, Algo. 2], [FRSG22, FGM+23, Algo. 2])
the computational complexity. In addition, we compute the complexity of error detection
([DN20, Algo. 3, 4] and error correction ([FRSG22, FGM+23]). The error correction in
[FRSG22, FGM+23] relies on the majority function, which can be realized using sorting-
based algorithms. Specifically, [FRSG22, FGM+23] achieves secret sharing correction
by re-setting each of the duplicated shares to the output of a majority function, which
takes all the duplicated shares as input. However, [FRSG22, FGM+23] didn’t provide the
concrete algorithm or Boolean circuits for such a majority function. Hence, we choose the
insertion sort [CLRS22] (with asymptotic complexity O(n2) for n inputs) and calculate
the corresponding complexity. More specifically, we compute the concrete number Boolean
gates for realizing the insertion sort algorithm by transforming all the arithmetic operations
(e.g., comparison, index subtraction) inside the insertion sort algorithm using the Boolean
circuit from [BDST20]. In Figure 9, we compare the computational complexity for different
compilers for t probes and e faults.
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Table 9: Boolean circuit complexity for the multiplication operation and error-
detection/correction in one AES-128 round of our BGW-based PSS and LaOla-based
PSS compiler, and the duplicated Boolean masking [DN20, FRSG22, FGM+23]. The
security parameters are t probes and e faults with e = t and e, t ∈ [1, 30]. The best
complexity for achieving combined security is marked in bold. Please note that [FRSG22]
shows that NINA* is not combined secure.
t = e Multiplication Error Detection/Correction

LaOla-PSS
(this work)

BGW-PSS
(this work)

CINI-MINIs
[FGM+23]

NINA*
[DN20]

LaOla-PSS
(this work)

BGW-PSS
(this work)

CINI-MINIs
[FGM+23]

NINA*
[DN20]

1 5997328 436968 34560 1408 650896 59024 16896 224
2 6303430 749768 354240 5520 1338388 137304 117120 816
3 6616944 1147840 1684480 15104 2063106 285910 419328 1984
4 6937870 1640364 5486400 33520 2825068 526706 1094400 3920
5 7266208 2236520 14217984 64896 3624292 884004 2365440 6816
6 7601958 2945488 31595200 114128 4460796 1384564 4507776 10864
7 7945120 3776448 62853120 186880 5334598 2057594 7848960 16256
8 8295694 4738580 115007040 289584 6245716 2934750 12768768 23184
9 8653680 5841064 197113600 429440 7194168 4050136 19699200 31840
10 9019078 7093080 320531904 614416 8179972 5440304 29124480 42416
11 9391888 8503808 499184640 853248 9203146 7144254 41581056 55104
12 9772110 10082428 749819200 1155440 10263708 9203434 57657600 70096
13 10159744 11838120 1092268800 1531264 11361676 11661740 77995008 87584
14 10554790 13780064 1549713600 1991760 12497068 14565516 103286400 107760
15 10957248 15917440 2148941824 2548736 13669902 17963554 134277120 130816
16 11367118 18259428 2920610880 3214768 14880196 21907094 171764736 156944
17 11784400 20815208 3899508480 4003200 16127968 26449824 216599040 186336
18 13871728 23593960 5124813760 4928144 19369834 31647880 269682048 219184
19 16175160 26604864 6640358400 6004480 23066870 37559846 331968000 255680
20 18704896 29857100 8494887744 7247856 27258874 44246754 404463360 296016
21 21471136 33359848 10742321920 8674688 31987276 51772084 488226816 340384
22 24484080 37122288 13442016960 10302160 37295138 60201764 584369280 388976
23 27753928 41153600 16659025920 12148224 43227154 69604170 694053888 441984
24 31290880 45462964 20464360000 14231600 49829650 80050126 818496000 499600
25 35105136 50059560 24935249664 16571776 57150584 91612904 958963200 562016
26 39206896 54952568 30155405760 19189008 65239546 104368224 1116775296 629424
27 43606360 60151168 36215280640 22104320 74147758 118394254 1293304320 702016
28 48313728 65664540 43212329280 25339504 83928074 133771610 1489974528 779984
29 53339200 71501864 51251270400 28917120 94634980 150583356 1708262400 863520
30 58692976 77672320 60444347584 32860496 106324594 168915004 1949696640 952816
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