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Abstract. Fix odd primes p, ℓ with p ≡ 3 mod 4 and ℓ ̸= p. Consider
the rational quaternion algebra ramified at p and ∞ with a fixed maxi-
mal order O1728. We give explicit formulae for bases of all cyclic norm ℓn

ideals of O1728 and their right orders, in Hermite Normal Form (HNF).
Further, in the case ℓ | p + 1, or more generally, −p is a square modulo
ℓ, we derive a parametrization of these bases along paths of the ℓ-ideal
graph, generalising the results of [1]. With such orders appearing as the
endomorphism rings of supersingular elliptic curves defined over Fp, we
note several potential applications to isogeny-based cryptography includ-
ing fast ideal sampling algorithms. We also demonstrate how our findings
may lead to further structural observations, by using them to prove a re-
sult on the successive minima of endomorphism rings of supersingular
curves defined over Fp.

1 Introduction

Take a prime p ≡ 3 mod 4 and consider the quaternion algebraBp,∞ = ⟨1, i, j, k⟩Q
with i2 = −1, j2 = −p and k = ij = −ji. For large p, the study of maximal
orders and their connecting ideals in Bp,∞ is particularly relevant to the field
of isogeny-based cryptography. The security of every isogeny-based scheme re-
lies on the assumption that computing the ring of endomorphisms of a random
supersingular elliptic curve over Fp is hard. Under the Deuring correspondence
[10], such an endomorphism ring is isomorphic to a maximal quaternion order in
Bp,∞, with isogenies of degree N corresponding to left ideals of norm N . Hence
the more we learn about these orders and ideals, the more we learn about se-
curity of isogeny-based schemes. Additionally under the correspondence, certain
problems for elliptic curves can be translated to problems in quaternion alge-
bras, where properties of quaternion algebras can make them easier to solve.
This has led to several constructive applications leveraging quaternions such as
the KLPT algorithm [13] used by the digital signature scheme SQISign [9].

In this work we give new structural results on the bases of maximal orders
in Bp,∞ and connecting ideals between them. We restrict to only consider ideals
of odd prime power norm ℓn. This remains cryptographically relevant as: many
isogeny-based schemes use isogenies of prime power degree, most famously SIDH



[12] (now broken [5, 14, 15]); and in general, any separable isogeny can be de-
composed into a chain of isogenies of prime power degree. We also restrict to
ideals with a specific left-order, corresponding to the endomorphism ring of the
curve E1728 : y2 = x3 + x, with j-invariant 1728, which is often chosen as the
starting curve for isogeny-based schemes.

The structure of maximal quaternion orders has been previously studied in
depth, for instance see the results of Ibukiyama [11]. Only recently has their
structure been considered in relation to isogeny paths. In [1], the authors made
a first attempt to parametrize the bases of maximal orders along ℓn-isogeny
paths from E1728, through a connection to paths in Bruhat-Tits trees given in
[2]. Essentially this means at each point in the walk, one may assign a direction
di ∈ {0, ..., ℓ} for the next step. The basis of the resulting maximal order can
then be determined simply from p, ℓ, n and the directions taken (d0, ..., dn−1).
Their methods came with several restrictions however. They were limited to
only use degree ℓn isogenies with kernels defined over Fp2 , meaning for a prime
p = 4ℓef − 1 the path length was restricted n ≤ e. Combining this with the fact
their paths must start from E1728, when f is large the results only apply to a
relatively small proportion of the isomorphism classes of maximal orders; those
corresponding to curves close to E1728.

Our findings include a generalisation of their result. While we will also work
with ℓn isogenies from E1728, we remove the restriction on n, and so cover all
isomorphism classes of maximal quaternion orders. Also we do not require ℓ |
p − 1, only that −p is a square mod ℓ. When −p is not a square mod ℓ we do
not achieve a parametrization, but still present new structural results for norm
ℓn ideals and their right orders. We also briefly mention potential applications
of these results, and use them to prove a statement regarding the successive
minima of the endomorphism rings of curves defined over Fp.

Some proofs are assisted using SageMath [16], with code available online at:
https://github.com/jtcc2/structural-results-for-quaternion-orders-

and-ideals.

Contributions

We now give a detailed summary of our findings.

Take odd primes p ̸= ℓ with p ≡ 3 mod 4. Let O1728 be the maximal quater-
nion order in Bp,∞,

O1728 =

≠
1 + j

2
,
i+ k

2
, j, k

∑
Z

which is isomorphic to the endomorphism ring of the curve E1728 : y2 = x3 + x
over Fp, with j-invariant 1728. Let δ(P ) = 1 when a property P holds and 0
otherwise. We show (Theorem 1) for any integer n ≥ 1, the set of Z-lattices of

https://github.com/jtcc2/structural-results-for-quaternion-orders-and-ideals
https://github.com/jtcc2/structural-results-for-quaternion-orders-and-ideals


the form,〈 1
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where S = (A,B,C, a, b, c) ∈ Z6 satisfy the conditions below, is exactly the set
right orders of cyclic norm ℓn left O1728-ideals, and the basis above is in Hermite
Normal Form.

Precisely the conditions on S are: (1) either, 0 ≤ a, b ≤ n with a + b = n,
or −n ≤ a ≤ 0 and b = n; (2) C ∈ Z with 0 ≤ C < ℓb+c, and c = 0 if
a ≥ 0 otherwise c = −a; (3) 0 ≤ A < ℓn+a and 0 ≤ B < 2ℓ2b; (4) B is odd, (5)
α−4A2 is divisible by ℓ2(n−b), where α is the unique solution to αp ≡ −ℓ2n−2a−2b

mod 2ℓ2n; (6) α−4A2

ℓ2(n−b) is a square modulo 2ℓ2b; (7) B is one of the square roots

of α−4A2

ℓ2(n−b) modulo 2ℓ2b; (8) 2A+BC ≡ 0 mod ℓb+c; and (9) ℓ2c | 1 + C2.
That is to say for any cyclic norm ℓn ideal from O1728, there is a unique

tuple S satisfying the above conditions such that its right order equals (*). And
conversely, for any tuple S satisfying the conditions, the Z-lattice (*) is the right
order of a cyclic norm ℓn ideal.

Furthermore we show (Theorem 2) for an order O defined by (*), the norm
ℓn connecting ideal1 from O1728 to O is,〈 1

2
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While these formula may seem complex, they simplify significantly in specific
circumstances. We show (Proposition 1) when ℓ ≡ 3 mod 4 and p is a square
mod ℓ, that we always have (a, b, c) = (0, n, 0), and in the ideal result above,
may set C = 0. As another example, we consider taking n = 1 (Theorem 4),
and observe the set of left O1728-ideals of any odd prime norm ℓ, is exactly the
disjoint union of 3 simpler sets,

{I1(x) : 0 ≤ x < ℓ solves x2 ≡ −1 mod ℓ}
∪̇ {I2(x) : 0 ≤ x < ℓ solves 4px2 ≡ −1 mod ℓ}
∪̇

{
I3(x, y) : 0 ≤ x < ℓ, 0 ≤ y < 2ℓ2 solve − py2 ≡ 1 + 4px2 ̸≡ ℓ2 mod 2ℓ2

}
where

I1(x) =
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1 Warning. This basis is not necessarily in Hermite Normal Form.



And we obtain a similar result for their right orders (Theorem 3).
We now discuss our main theorem (Theorem 5), a parametrization result

generalising that of [1]. Suppose ℓ is an odd prime such that p ̸= ℓ and −p is
a square mod ℓ (e.g. take ℓ | p + 1). Again take an integer n ≥ 1. We show
how to derive all tuples S = (A,B,C, a, b, c), satisfying the earlier conditions,
from a single variable d. This means we derive bases of all cyclic norm ℓn ideals
from O1728, and their right orders, from d. As a parametrization, the value
d, through its base ℓ expansion, encodes the directions taken at each step in
the ideal/isogeny walk. For d =

∑n−1
r=0 drℓ

r giving rise to a norm ℓn ideal I =
I1I2...In, the direction taken by each ℓ-ideal Ir is encoded by 0 ≤ dr < ℓ. In
the special case p = 4ℓef − 1 and n ≤ e, we show our allocation of directions
coincides with [1], and so the corresponding isogeny has kernel ⟨ℓe−n(P + dQ)⟩
or ⟨ℓe−n(dP +Q)⟩ for a particular basis P,Q of the ℓe-torsion on E1728.

In the simpler case of ℓ ≡ 3 mod 4, we derive all cyclic norm ℓn ideals from
O1728 as follows. First we fix r such that r2 ≡ −p mod ℓ2n. Then for every
0 ≤ d ≤ ℓn − 1 such that ℓ ∤ d2 + 1, define a ≤ n maximal such that ℓa | d,
and let d′ = d

ℓa . Let x, y, z be the unique solutions to x · 2r(d2 + 1) ≡ d2 − 1
mod ℓ2n, y · r(d2 + 1) ≡ −d′ mod ℓ2n−2a and z · 2d′ ≡ d2 − 1 mod ℓn−a. Then
the following Z-lattice is a norm ℓn ideal from O1728,

Id =
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And when ℓ | d, so is,
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Varying d, the ideals Id (and Jd when ℓ | d) are all distinct. The right orders of Id
and Jd are simply the Z-lattices of (*) from tuples (x, 2y + ℓ2n−2a, z, a, n− a, 0)
and (−x, 2y + ℓ2n−2a, ℓn−2a − z, a, n − a, 0) respectively. For the ℓ ≡ 1 mod 4
case, see Theorem 5 Part B..

Applications

We note the following direct applications of our results.

• Investigating structural properties of maximal orders in special cases. For
example, in Section 7 we prove the following result. For a prime p ≡ 3
mod 4 and O ⊂ Bp,∞ a maximal quaternion order for which there is a

primitive embedding of Z[ 1+
√
−p

2 ], then the third successive minima of the
Gross lattice OT is exactly p. While this result is not entirely new, existing
approaches to its proof are certainly non-trivial. Hence this showcases the
applicability of our main theorems for proving similar claims.

• Ideal sampling algorithms. Our parametrization result (Theorem 5) gives
an alternative polynomial time algorithm for uniformly sampling a random
norm ℓn ideal of O1728. This can be applied to any maximal order O by



computing the connecting ideal J from O1728 to O, sampling a random
O1728-ideal I, then computing the push-forward of I through J . Similarly it
can be repeatedly used to sample ideals of any fixed (odd) norm, although
the more distinct factors of the norm, the slower the performance will be. It
is also potentially implementable in constant-time.

For completeness we also restate the following applications suggested in [1],
although provide no further advancement. The additional structure provided by
a parametrization of the basis of norm ℓn ideals from O1728 and their right orders
could aid in further study of finding optimal solutions the quaternion ℓ-isogeny
problem [13]. Furthermore our parametrization is well suited for computing the
norm forms (including trace-zero norm forms) of orders along an ℓ-isogeny path.
Examining these parametrised norm forms, could aid our understanding of the
degrees and traces which appear from endomorphisms of different supersingular
elliptic curves.
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2 Background

This section covers some prerequisites. For a more complete picture of quaternion
algebras we recommend the book [17].

2.1 Quaternion Algebra Bp,∞

The quaternion algebra B = (a, b)Q with a, b ∈ Q is a 4 dimensional non-
commutative algebra over Q with elements written x = x0+x1i+x2j+x3ij for
xr ∈ Q and multiplication defined by i2 = a, j2 = b, and ij = −ji, often defining
k := ij for simplicity. Each quaternion has a conjugate x = x0−x1i−x2j−x3ij,
a (reduced) trace Tr(x) = x + x = 2x0, a (reduced) norm nrd(x) = xx, an
inverse x−1 = x

nrd(x) , and each x ̸∈ Q satisfies a quadratic minimal polynomial

x2 − Tr(x)x + nrd(x) = 0. Taking the norm of an arbitrary element gives a
rational quadratic form (x0, x1, x2, x3) 7→ x2

0− ax2
1− bx2

2 + abx2
3 called the norm

form of B. For a prime p we denote by Bp,∞ the quaternion algebra ramified
at places p and ∞. We will only work in the case p ≡ 3 mod 4 where we may
explicitly define it as Bp,∞ ∼= (−1,−p)Q.

2.2 Z-Lattices

Take a Z-lattice L = Ze1 + ...+ Zen within a vector space V . Suppose V has a
fixed basis b1, ..., bm then each ei may be written as a column vector,

ei = ei1b1 + ...+ eimbm ←→

Ü
ei1
ei2
. . .
eim

ê
.



A basis matrix of L is a matrix where columns correspond to a set of basis vec-
tors by the above transformation. In a similar way, we may also use matrices
representing a set of vectors spanning L, which may have additional columns.
One may apply unimodular column operations to these matrices without chang-
ing the lattice they define. These consist of: adding an integral multiples of a
column to another (cr 7→ cr + tcs); swapping columns (cr ↔ cs); or changing
a sign (cr 7→ −cr). Applying unimodular column operations amounts to mul-
tiplying on the right by a unimodular matrix. Under such operations a basis
matrix can be put into a lower or upper triangular form, then further into a
lower/upper Hermite Normal Form (HNF) by minimizing entries relative to the
diagonal. This form is unique when there are at least as many columns as rows.

We will mainly work with full-rank Z-lattices L within Bp,∞ with the basis
of Bp,∞ fixed as 1, i, j, k. Such a lattice then has an associated norm form with
respect to a Z-basis e1, ..., e4 as,

(x1, x2, x3, x4) 7→ nrd(x1e1 + ...+ x4e4).

We restrict to integer inputs xi ∈ Z, so the form represents n ∈ Q if and only
if there exists an element in L of reduced norm n. We say the discriminant of
L, written disc(L), is the discriminant of its norm form. Lattices may be added
L1 +L2, intersected L1 ∩L2, and within Bp,∞, multiplied together L1L2, or by
a single element α · L1. We also define the Gross lattice of L to be the set,

LT = {2x− Tr(x) : x ∈ L}.

When dealing with many lattice problems, it is often computationally easier
to work with basis vectors which have smaller norms, and such elements can
reveal structural properties of the lattice. One way to quantify this is using
successive minima. For a lattice L with norm form (or vector space norm) f , the
ith successive minima for 1 ≤ i ≤ rank(L) is defined to be the minimum value
λi such that the rank of {v ∈ L : f(v) ≤ λi} is greater than or equal to i.

2.3 Quaternion Orders

For number fields, roots of monic polynomials with integer coefficients are called
algebraic integers. Within quaternion algebras we call them quaternion integers
and they are exactly the elements of integral norm and trace. A quaternion order
in Bp,∞ is a full-rank Z-lattice which is a ring (containing 1). As lattices, they
inherit the definitions of the previous section. As rings, they may only contain
quaternion integers. While infinitely many orders exist we focus on maximal
orders, up to (ring) isomorphisms, of which there are only finitely many classes.
Maximal orders are those not contained in any larger order, or equivalently in
Bp,∞, those with discriminant p2. Two orders O, O′ are isomorphic (as rings) if
and only if they are conjugate, i.e. O′ = α−1Oα for some α ∈ Bp,∞.

For p ≡ 3 mod 4 the following order in Bp,∞, which we call O1728, is always
maximal,

O1728 = Z · 1 + j

2
+ Z · i+ k

2
+ Zj + Zk.



2.4 Integral Ideals

An (integral) left (or right) ideal of a quaternion order O is a full-rank Z-lattice
I ⊆ O such that OI ⊆ I (or IO ⊆ I). As a lattice, it again inherits the previous
definitions. We say I = (x1, ..., xn) is generated by x1, ..., xn if it is generated
as a left (or right) O-module, i.e. for left ideals I =

∑
rO · xr. It is principal if

generated by one element, and multiplying by a principal ideal is equivalent to
multiplying by the generator, I · α = I · (α). Two ideals I, J are left (or right)
equivalent if they differ by a principal ideal on the right (or left), so I = Jα (or
I = αJ) for some non-zero α ∈ Bp,∞. We say a left (or right) O-ideal I is cyclic
(a.k.a. primitive) if for any q ∈ Z the set {xq : x ∈ I} is not a left (or right) O-
ideal. The size of an ideal is represented by the ideal norm N(I) = {gcd(nrd(x)) :
x ∈ I} and for cyclic left/right O-ideals, disc(I) = N(I)4 ·disc(O). By definition
N(I) divides the reduced norm of every element in the ideal. Moreover, the
ideal norm is contained in the ideal N(I) ∈ I, as is the reduced norm of every
element in I. Every cyclic left O-ideal may be written as I = O · N(I) + O · α
for some quaternion integer α ∈ I, and in Bp,∞, for N(I) coprime to p we
have I ∩ Z = Z ·N(I). Also the conjugate of a left O-ideal I is a right O-ideal
I = {x : x ∈ I}. The left order and right order of an quaternion ideal I are,

Oleft(I) = {α ∈ B : αI ⊆ I} and Oright(I) = {α ∈ B : Iα ⊆ I}

respectively, and they have the same discriminant. A cyclic left O-ideal has left
order O (similarly for right), and for the conjugate ideal, the left and right order
switch. For any (integral) ideal I we have N(I) · Oleft(I) ⊆ I ⊆ Oright(I) and
N(I) · Oright(I) ⊆ I ⊆ Oleft(I). For ideals I, J with Oright(I) = Oleft(J) the
lattice IJ is an (integral) ideal with left order Oleft(I) and right order Oright(J).
The ideal norm is then multiplicative N(IJ) = N(I)N(J), and for an O-ideal
I we have II = N(I) · O. For N(I) = q1...qn with qi prime, a cyclic ideal I
can decomposed into a product of cyclic ideals I = I1...In with N(Ir) = qr.
Let O1,O2 be maximal orders, then we say an ideal I with Oleft(I) = O1 and
Oright(I) = O2 is a connecting ideal from O1 to O2. For any pair of maximal
orders O1,O2, there exists a unique integer N such that NO1O2 is a cyclic
(integral) connecting ideal. The norm of NO1O2 is N , and all connecting ideals
from O1 to O2 are scalar multiples of it.

2.5 The Deuring Correspondence

For a prime p, the ring of endomorphisms of a supersingular elliptic curve over
Fp, written End(E), is isomorphic to a maximal order in Bp,∞. The Deuring
correspondence [10] defines a correspondence between isomorphism classes of
such curves, and isomorphism classes of maximal orders. It is one-to-one for
Fp-rational curves and maximal orders for which Z[

√
−p] embeds, and two-to-

one otherwise. Ideals then naturally relate to isogenies. For a curve E1 with a
fixed isomorphism End(E1) ∼= O1 ⊂ Bp,∞, outgoing isogenies φ1 : E1 → E2

correspond to left O1-ideals Iφ1
, and End(E2) ∼= O2 := Oright(Iφ1

). Moreover we



have N(Iφ1
) = deg(φ1), and φ1 is an endomorphism φ1 ∈ End(E) if and only

if I is the principal ideal generated by the element of O corresponding to φ1

under the isomorphism End(E1) ∼= O1. Also the ideal Iφ1 is cyclic if and only
if φ1 is a cyclic isogeny, meaning an isogeny of cyclic kernel. We may then take
a second isogeny φ2 : E2 → E3 which corresponds to a left O2-ideal Iφ2

in the
same way. The composite isogeny φ2 ◦ φ1 : E1 → E3 then corresponds the left
O1-ideal Iφ1

Iφ2
. Every isogeny φ1 also has a dual φ̂1 : E2 → E1 of the same

degree with φ̂1 ◦ φ1 being the multiplication-by-deg(φ1) endomorphism. Note
that φ̂1 as an isogeny from E2, corresponds to the conjugate ideal, i.e. the left
O2-ideal Iφ1 . Just as cyclic ideals decompose into the products of prime norm
ideals, so do cyclic isogenies. Note that for a prime ℓ ̸= p, from any curve E there
are ℓ+ 1 outgoing degree ℓ isogenies up to post-composition with isomorphism,
and similarly there are ℓ+ 1 norm ℓ left-ideals of a fixed O ∼= End(E).

3 Structural result for right orders of ℓn ideals

In this section we prove our structural result on the bases of right orders of cyclic
norm ℓn left-O1728 ideals. We express the bases of orders using the basis matrix
notation defined in Section 2.2, and define δ(P ) = 1 when property P holds, and
δ(P ) = 0 otherwise.

Definition 1. For odd primes p ̸= ℓ with p ≡ 3 mod 4 and n ≥ 1, let Sp,ℓ,n

denote the set of all basis matricesÜ 1
2 0 0 0
0 1

2ℓa+b 0 0
ℓa

2
A
ℓn ℓa 0

C+δ(2∤C)·ℓb+c

2ℓc
B
2ℓb

C
ℓc ℓb

ê
where,
• either, 0 ≤ a, b ≤ n with a+ b = n, or −n ≤ a ≤ 0 and b = n,
• C ∈ Z with 0 ≤ C < ℓb+c, and c = 0 if a ≥ 0 otherwise c = −a,
• 0 ≤ A < ℓn+a and 0 ≤ B < 2ℓ2b,
• B is odd,
• α − 4A2 is divisible by ℓ2(n−b), where α is the unique solution to αp ≡
−ℓ2n−2a−2b mod 2ℓ2n,

• α−4A2

ℓ2(n−b) is a square modulo 2ℓ2b,

• B is one of the square roots of α−4A2

ℓ2(n−b) modulo 2ℓ2b,

• 2A+BC ≡ 0 mod ℓb+c,
• and ℓ2c | 1 + C2.

The result can then be stated as follows.

Theorem 1. Fix odd primes p ̸= ℓ with p ≡ 3 mod 4 and an integer n ≥ 1.
A. All right orders O of cyclic left-ideals I ⊆ O1728 of norm ℓn have a HNF

basis matrix in the set Sp,ℓ,n.



B. Every matrix in Sp,ℓ,n is the basis of a distinct maximal order O where the
connecting ideal between O1728 and O has norm ℓn.

Note in Part B., all the conditions of Definition 1 are necessary. While
we won’t prove it, upon removing any condition from the definition, counter-
examples can be found.

The rest of this section is dedicated to proving the theorem. We will prove
points A. and B. separately.

3.1 Proof of Theorem 1 Part A.

Take p, ℓ, n as in the Theorem. Let O ⊂ Bp,∞ be the right order of a cyclic norm
ℓn left O1728 ideal I. We may represent O by a basis matrix in Hermite Normal
Form (HNF), that is, Ü

e00 0 0 0
e01 e11 0 0
e02 e12 e22 0
e03 e13 e23 e33

ê
.

for eij ∈ Q, with emn ≥ 0 for all n,m. We will denote by e0, ..., e3 the basis
elements of O arising from each column of the matrix.

Since the left and right orders of cyclic ideals have the same discriminant,
we know O is maximal. We first obtain some information regarding emn from a
previous result of [3].

Lemma 1. Continuing from above, the following properties hold,
1. The denominators of each rational entry emn, when expressed in simplest

form, divide 2 · ℓn,
2. e00 = 1

2 ,
3. e11 = 1/(2e22e33),
4. e22e33 ≤ ℓn,
5. and e01 = 0 or e01 = 1/(4e22e33).

Proof. From [3, Lemma 5.2] with K = 2 and N(I) = ℓn, where point (2) comes
from its proof.

Next we give initial results on entries e22, e33 and e01.

Lemma 2. Continuing from above we have, e22 = ℓa and e33 = ℓb for some
integers a, b with −n ≤ a ≤ n, 0 ≤ b ≤ n and a+ b ≤ n. Also e01 = 0.

Proof. The last basis vector is e3 = e33k and so e3 · e3 = −e233p ∈ O ∩ Q = Z.
By Lemma 1 point (1) since p and ℓ are coprime it follows that e33 ∈ Z. Since
k ∈ O1728 andN(I)·O1728 ⊆ O we haveN(I)·k ∈ O. This means e33 | N(I) = ℓn

so we may write e33 = ℓb with b ≤ n. The same argument shows N(I) ·j ∈ O and
so we write e22 = ℓa with a ≤ n. From e33 ∈ Z we get b ≥ 0. From Lemma 1 point
(1) we get a ≥ −n. And applying the same result to e11 = 1/(2e22e33) = 1/2ℓa+b

we get a+ b ≤ n.
By Lemma 1 point (5) e01 = 0 or e01 = 1/(4ℓa+b). If however e01 = 1/(4ℓa+b)

since ℓ is odd this contradicts with Lemma 1 point (1) as 4 does not divide 2ℓn.



Next we prove entry e23 is in the given form.

Lemma 3. Continuing from above, let c = −a for a ≤ 0 and c = 0 otherwise.
Then there exists C ∈ Z such that e23 = C

ℓc and 0 ≤ C ≤ ℓb+c.

Proof. Consider the basis vector e2 = e22j+e23k = ℓaj+e23k. Every element of
O is a quaternion integer which implies nrd(e2) = p(ℓ2a+e223) ∈ Z. If a ≥ 0 then
pe223 = nrd(e2)− pℓ2a ∈ Z. By Lemma 1 point (1) and ℓ ̸= p, we get e23 ∈ Z so
write e23 = C = C

1 = C
ℓc . If a ≤ 0 then p(ℓce23)

2 ∈ Z so by the same argument

ℓce23 ∈ Z and we may write e23 = C
ℓc . The fact 0 ≤ C comes from all entries

being positive in HNF. And C ≤ ℓb+c comes from the fact e23 is minimized
relative to the diagonal entry e33 in HNF, so C

ℓc ≤ e33 = ℓb.

We now return to address the first basis vector, recalling that e00 = 1
2 and

e01 = 0.

Lemma 4. Continuing from above we have e02 = ℓa

2 and e03 = C+δ(2∤C)·ℓb+c

2ℓc .

Proof. For e02, we know 1 ∈ O and hence 2e0 − 1 = 2e02j + (∗)k ∈ O. This
means it must be a linear combination of the last two basis vectors, which implies
e22 = ℓa | 2e02 so e02 ∈ ℓa

2 Z. Since HNF minimizes entries relative to the diagonal

we have 0 ≤ e02 < e22 = ℓa, therefore e02 = 0 or ℓa

2 . Suppose for contradiction

e02 = 0. Since 1+j
2 ∈ O1728 we have ℓn+ℓnj

2 ∈ O, so ℓn+ℓnj
2 − ℓne0 = ℓn

2 j+(∗)k ∈
O. This means e22 = ℓa ∤ ℓn

2 which is not possible. Hence by contradiction

e02 = ℓa

2 .

Now consider e03. We have nrd(e0) = 1+pℓ2a

4 + e203p ∈ Z. If a ≥ 0 then

1 + pℓ2a ≡ 1 + 3 · 1 ≡ 4 ≡ 0 mod 4 which implies 1+pℓ2a

4 ∈ Z and so e203p ∈ Z.
By Lemma 1 point (1), this means e03 ∈ Z. If instead a < 0 then nrd(e0) =
ℓ−2a+p
4ℓ−2a +e203p ∈ Z and ℓ−2a+p

4ℓ−2a ∈ ℓ2aZ since modulo 4 we have ℓ−2a+p ≡ 1+3 ≡ 0
mod 4. This implies pe203 ∈ ℓ2aZ and so e03 ∈ ℓaZ.

From 1 ∈ O we know 1 − 2e0 + e2 = −2e03k + e23k ∈ O which implies
e33 = ℓb | (e23 − 2e03). Therefore there exist an integer r such that −rℓb =

e23 − 2e03. Rearranging this gives e03 = e23+rℓb

2 . By HNF minimizing entries we
know 0 ≤ e03, e23 ≤ ℓb which means r = 0 or 1. If a ≥ 0 then e03, e23 ∈ Z so there
is only one value of r for which this works, that is r = δ(2 ∤ e23) so that e23+ rℓb

is divisible by 2. This gives e03 = e23+δ(2∤e23)·ℓb
2 . If a < 0 then e03, e23 ∈ ℓaZ

and again there is only one value of r such that e03 = ℓ−ae23+rℓb−a

2ℓ−a ∈ ℓaZ.
This gives e03 = ℓ−ae23+δ(2∤ℓ−ae23)ℓ

b−a

2ℓ−a . In both cases this can be written as

e03 = C+δ(2∤C)·ℓb+c

2ℓc .

The last column to address is the second, where we know e11 = 1
2ℓa+b .

Lemma 5. Continuing from above, e12 = A
ℓn and e13 = B

2ℓb
with integers 0 ≤

A < ℓn+a and 0 ≤ B < 2ℓ2b.



Proof. By Lemma 1 point (1), we can write e12 = A′

2ℓn and e13 = B′

2ℓn where

A′, B′ ∈ Z. Then i+k
2 ∈ O1728 implies ℓni+ℓnk

2 ∈ O, and so

ℓn+a+be1 −
ℓni+ ℓnk

2
= ℓa+bA

′

2
j +

Å
ℓa+bB

′

2
− ℓn

2

ã
k ∈ O

which must be a linear combination of e2 and e3 so e22 = ℓa | ℓa+b A′

2 , i.e.
A′ℓb

2 ∈ Z so 2 | A′. We then redefine e12 = A
ℓn for A ∈ Z and HNF minimization

gives 0 ≤ A < ℓn+a.

Also consider e1 · e3 ∈ O which by previous results gives,

−pB′ℓb

2ℓn
+

Aℓbp

ℓn
i− 1

2ℓa
j ∈ O.

Hence e00 = 1
2 |

pB′ℓb

2ℓn so ℓn | B′ℓb. Therefore ℓn−b | B′ so we can redefine

e13 = B
2ℓb

for B ∈ Z, and by minimizing HNF entries we get 0 ≤ B < 2ℓ2b.

The above results show the entries enm are all as stated, however it remains
to prove the conditions relating the different variables. The conditions involving
A,B,C are now given.

Lemma 6. Continuing from the above,

1. B is odd,
2. α − 4A2 is divisible by ℓ2(n−b), where α is the unique solution to αp ≡
−ℓ2n−2a−2b mod 2ℓ2n,

3. α−4A2

ℓ2(n−b) is a square modulo 2ℓ2b,

4. B is one of the square roots of α−4A2

ℓ2(n−b) modulo 2ℓ2b,

5. and 2Aℓa+b+c +BCℓn ≡ 0 mod ℓn+b+c,
6. ℓn−a−2b | A,
7. ℓ2c | 1 + C2.

Proof. We build upon the statement of ℓn+a+be1− ℓni+ℓnk
2 ∈ O from the previous

proof. We may subtract multiples of e2 to remove the j term, leaving

ℓn+a+be1 −
ℓni+ ℓnk

2
−Aℓbe2 =

Ç
Bℓn+a − ℓn

2
− ACℓb

ℓc

å
k ∈ O.

This means e33 = ℓb | (Bℓn+a−ℓn

2 − ACℓb

ℓc ) which clearly requires B to be odd.

Now consider nrd(e1) = ℓ2n−2a−2b+p(4A2+ℓ2(n−b)B2)
4ℓ2n where 2n − 2a − 2b ≥ 0

from the inequality a + b ≤ n. Since nrd(e1) ∈ Z there exists r ∈ Z such that
ℓ2n−2a−2b + p(4A2 + ℓ2(n−b)B2) = 4rℓ2n. Rearranging gives,

B2 =

Ç
4rℓ2n − ℓ2n−2a−2b

p
− 4A2

å
1

ℓ2(n−b)
.



Since B ∈ Z the above expression implies 4rℓ2n − ℓ2n−2a−2b ≡ 0 mod p. Let r0
be the solution to this modulo p then r = r0 + r′p for some r′ ∈ Z. We get,

B2 =
(
α− 4A2

) 1

ℓ2(n−b)
+ 4r′ℓ2b defining α =

4r0ℓ
2n − ℓ2n−2a−2b

p
.

Since B < 2ℓ2b we only need the value modulo 2ℓ2b. We get B2 ≡ α−4A2

ℓ2(n−b)

mod 2ℓ2b, hence B is a square root as claimed in the statement.
Notice the definition of α above is not the value given in the Lemma state-

ment. In the formula for B however, we only need α−4A2

ℓ2(n−b) modulo 2ℓ2b and
hence we only need α and A modulo 2ℓ2n. By the definition above α solves
αp ≡ −ℓ2n−2a−2b mod 2ℓ2n. We argue however that this relation has at most
one possible solution for α, and so we may redefine α to be this unique solution.
Clearly the relation modulo ℓ2n only has one solution for α by finite field arith-
metic, denote it α0. Lifting it modulo 2ℓ2n gives pα ≡ p(α0+rℓ2n) ≡ −ℓ2n−2a−2b

mod 2ℓ2n for r = 0 or 1. As the left-hand side takes on two different values, only
one can be correct, so there is at most one solution modulo 2ℓ2n.

For point (5) consider e1 · e2 ∈ O, which gives,

−p
Å
Aℓa

ℓn
+

BC

2ℓb+c

ã
+ (∗)i+ (∗)j + (∗)k ∈ O

which means e00 = 1
2 |
Ä
2Aℓa+b+c+BCℓn

2ℓn+b+c

ä
. This implies ℓn+b+c | p(2Aℓa+b+c +

BCℓn), or equivalently, since p, ℓ are coprime, 2Aℓa+b+c+BCℓn ≡ 0 mod ℓn+b+c.
Point (6) comes from O ∋ e1 · e3 + pBe0 = pℓb−nAi + (∗)j + (∗)k, which to

lie in O requires e11 = 1
2ℓa+b | pℓb−nA, hence ℓa+2b−nA ∈ Z.

Finally point (7) is trivial when a ≥ 0 as ℓ2c = 1. For a < 0 we have

nrd(e2) = nrd(ℓaj + C
ℓc k) = p( ℓ

2a+2c+C2

ℓ2c ) ∈ Z. And c = −a so this gives ℓ2c |
ℓ2a+2c + C2 = 1 + C2.

The final conditions to prove are the relations between a and b.

Lemma 7. Continuing from the above,
1. if a ≥ 0 then a+ b = n,
2. and if a < 0 then b = n.
Hence a + b + c − n = 0 and so Lemma 6 point (5) becomes 2A + BC ≡ 0
mod ℓb+c.

Proof. (1) Suppose for contradiction that a ≥ 0 and a + b < n, so c = 0. We’ll
show that ℓn−1O1728 ⊆ O so that N(I) = [O1728 : O1728 ∩ O] ≤ ℓn−1 which is
contradiction with the fact that I has norm ℓn.

To show ℓn−1O1728 ⊆ O it is enough to show ℓn−1+ℓn−1j
2 , ℓn−1i+ℓn−1k

2 , ℓn−1j,
ℓn−1k ∈ O. Let e0, e1, e2, e3 denote the basis vectors of O as given by the columns
of the matrix in Theorem 1. One may check that,

ℓn−1 + ℓn−1j

2
= ℓn−1e0 +

ℓn−1−a − ℓn−1

2
e2 −

ℓn−1δ(2 ∤ C) + Cℓn−1−a−b

2
e3,



ℓn−1i+ ℓn−1k

2
= ℓn+a+b−1e1 − ℓb−1Ae2 +

Ç
−ℓn+a−1−bB + ℓn−1−b

2
+

AC

ℓ

å
e3,

ℓn−1j = ℓn−1−ae2 − Cℓn−1−a−be3,

and ℓn−1k = ℓn−1−be3.

Looking at the coefficients of the above expressions, since a + b < n implies
n − 1 − a − b ≥ 0, and ℓ, B are odd and C, δ(2 ∤ C) have the same parity, it is
clear most of the coefficients are integral. There are a few less obviously integral
coefficients which we now address.

To prove ℓb−1A ∈ Z. It is clearly true if b ≥ 1, so consider the case b = 0. By
Lemma 6 point (6) we have ℓn−a | A and as n− 1− a− b ≥ 0 we have n− a ≥ 1
so ℓ | A.

To prove AC
ℓ ∈ Z from 2Aℓa+b+BCℓn ≡ 0 mod ℓn+b we get 2Aℓa+b+BCℓn

ℓn+b ∈
Z so e1 ·e2+p 2Aℓa+b+BCℓn

ℓn+b e0 ∈ O. This is equal to −pℓn+aB+2pℓbAC
2ℓn+b i+(∗)j+(∗)k.

To lie in O this means e11 = 1
2ℓa+b | −pℓn+aB+2pℓbAC

2ℓn+b so −ℓ2aB+2ℓa+b−nAC ∈ Z
which implies AC

ℓn−a−b ∈ Z. Since n− a− b ≥ 1 we have AC
ℓ ∈ Z.

Therefore the coefficients above are all integral so the elements all lie in O.
(2) Fix a < 0 so c = −a > 0. Suppose b < n. We repeat the idea used to

prove point (1), that ℓn−1O1728 ⊆ O will give a contradiction. We have,

ℓn−1 + ℓn−1j

2
= ℓn−1e0 −

ℓn−1 − ℓn+c−1

2
e2 −

ℓn−1δ(2 ∤ C) + ℓn−1−bC

2
e3,

ℓn−1i+ ℓn−1k

2
= ℓn+b−1−ce1 −Aℓb−1e2 +

Ç
2AC − ℓn−bB

2ℓ1+c
+

ℓn−1−b

2

å
,

ℓn−1j = ℓn+c−1e2 − Cℓn−1−be3,

and ℓn−1k = ℓn−1−be3.

And it is enough to show all coefficients of es’s in the above expressions are inte-
gral. Almost all the exponents of ℓ are all non-negative from b < n which implies
n−b−1 ≥ 0. And all fractions with denominator 2 have even numerator since ℓ, B
are odd, and C, δ(2 ∤ C) have the same parity. The only non-obviously integral

coefficients require us to show Aℓb−1 ∈ Z, and 2AC−ℓn−bB
ℓ1+c and ℓn+b−1−c ∈ Z.

We now show Aℓb−1 ∈ Z. From the definition of α, we have αp ≡ −ℓ2(n−b)+2c

mod ℓ2n which means ℓ2min(n−b+c,n) | α so certainly ℓ2(n−b+1) | α. Since from
the theorem ℓ2(n−b) | α − 4A2 we also have ℓn−b | A. From b < n we have
n− b > 0 so ℓ | A hence Aℓb−1 ∈ Z.

Next we show 2AC−ℓn−bB
ℓ1+c ∈ Z. From the Theorem we have 2Aℓb+BCℓn ≡ 0

mod ℓn+b+c which implies e1 · e2 + ( 2pℓ
bA+pℓnBC
ℓn+c+b )e0 ∈ O. The value of this

expression is (2pℓ
bAC−pℓnB
2ℓn+b+c )i+ (∗)j + (∗)k which to lie in O implies e11 = ℓc

2ℓb
|

2pℓbAC−pℓnB
2ℓn+b+c . Removing the factor of p by coprimality, this is means ℓn+2c−b |

2AC − ℓn−bB. Then as b < n we have n + 2c − b > 1 + c so we certainly have
ℓ1+c | 2AC − ℓn−bB as required.



It remains to show ℓn+b−1−c ∈ Z. We have n+b−1−c ≥ n+0−1−n = −1,
so it is enough to show n + b − 1 − c ̸= −1. Suppose for contradiction that
n+ b− 1− c = −1 so b = 0 and c = n. Then by definition of α we have αp ≡ ℓ4n

mod 2ℓ2n, so either α = 0 or α = ℓ2n. Clearly α ̸= 0 as otherwise B is not odd,
hence α = ℓ2n. By point (1) ℓ2n | A, but as 0 ≤ A < ℓn+a = ℓ2n we have A = 0.

We also have 0 ≤ B < 2ℓ0 = 2 so B = 0 or B = 1. Since B2 ≡ ℓ2n−0
ℓ2n mod 2ℓ2b

we have B = 1. Then 2A + BCℓn ≡ 0 + Cℓn ≡ 0 mod ℓ2n, so C ≡ 0 mod ℓn.
From C < ℓb+c = ℓn this implies C = 0. Then e2 = 1

ℓn j has non-integral norm.
This is a contradiction so n+ b− 1− c ≥ 0 so ℓn+b−1−c ∈ Z.

This completes the proof of Theorem 1 Part A..

3.2 Proof of Theorem 1 Part B.

We now prove Theorem 1 Part B., that every element of Sp,ℓ,n is the basis matrix
of a distinct maximal order O where the connecting ideal from O1728 to O has
norm ℓn. We will break this down into smaller results: showing O is an order;
showing it is maximal; showing the cyclic connecting ideal from O1728 to O is of
norm ℓn; and lastly showing every two orders from Sp,ℓ,n are distinct. We start
with a technical result.

Lemma 8. Take p, ℓ, n as before, and variables (a, b, c, A,B,C) satisfying the
conditions of Sp,ℓ,n. Then
1. the values ω1 := p+1

4 , ω2 := B+1
2 , and ω3 := δ+C

2 are all integral,

2. if a ≥ 0, the values µ1 := 2A+BC+Bℓbδ
2ℓb

, µ2 := pℓ2nB2+ℓ2b+4pA2ℓ2b

4ℓ2n+2b , µ3 := ℓn−ℓb

2ℓb

and µ4 := ℓb+1
2 are all integral,

3. if a < 0, the values λ1 := 2A+BC+Bδℓn+c

2ℓn+c , λ2 := pB2+ℓ2c+4pA2

4ℓ2n , λ3 :=
C2+1−ℓ2c(δ+1)

4ℓ2c , λ4 := B−2AC−ℓ2c

2ℓ2c , λ5 := δ(δ−1)
4 , λ6 := ℓn−ℓc

2ℓc , and λ7 := ℓn+1
2

are all integral.
where δ := δ(2 ∤ C).

Proof. We know ω2 ∈ Z as B is odd, and ω1 ∈ Z as p ≡ 3 mod 4. Also µ4, λ7 ∈
Z as ℓ is odd, and µ3 ∈ Z as b ≤ n. It is also clear from 0 ≤ c ≤ n that
λ6 ∈ Z. By definition δ has the same parity as C, which shows ω3 ∈ Z. Since
(δ, δ − 1) = (0,−1) or (1, 0) we know δ(δ − 1) = 0 so λ5 ∈ Z.

From the condition 2A + BC ≡ 0 mod ℓb+c when a ≥ 0 we have c = 0 so
this gives 2A+BC

ℓb
∈ Z. Noting that C and ℓbδ have the same parity we have

2 | C + ℓbδ so 2ℓb | 2A+B(C + ℓbδ) giving µ1 ∈ Z. In the case a < 0 we instead
have b = n which by the same argument gives ℓn+c | 2A+BC so λ1 ∈ Z. We can
also multiply ℓn+c | 2A + BC by C giving ℓn+c | 2AC + BC2 and since c ≤ n
we certainly have ℓ2c | 2AC + BC2. From the other condition that ℓ2c | C2 + 1
we then get ℓ2c | 2AC +B(C2 + 1)−B = 2AC −B. We also know B is odd so
B − ℓ2c is even, giving 2ℓ2c | 2AC −B − ℓ2c and hence λ4 ∈ Z.

Recall by definition of B we have B2ℓ2n−2b ≡ α − 4A2 mod 2ℓ2n and by
coprimality of p and the definition of α we get pB2ℓ2n−2b ≡ −ℓ2n−2a−2b − 4pA2



mod 2ℓ2n. When a ≥ 0 and so a + b = n we have pℓ2nB2 + ℓ2b + 4pA2ℓ2b ≡ 0
mod 2ℓ2n+2b which gives 2µ2 ∈ Z. Then we get µ2 ∈ Z as on the numerator
pℓ2nB2 + ℓ2b ≡ 3 · 1 · 1 + ·1 ≡ 0 mod 4. In the case of a < 0 we have b = n and
a = −c so we instead have pB2 + ℓ2c + 4pA2 ≡ 0 mod 2ℓ2n and checking this
modulo 4 we get pB2 + ℓ2c + 4pA2 ≡ 3 · 1 + 1 + 0 ≡ 0 mod 4 and so λ2 ∈ Z.

Finally we show λ3 ∈ Z. This comes from the condition C2 +1 ≡ 0 mod ℓ2c

so ℓ2c divides the numerator of λ3. If C is even then δ = 0 and the numerator is
C2 + 1− ℓ2c ≡ 0 + 1− 1 ≡ 0 mod 4. If C is odd then δ = 1 and the numerator
is C2 + 1− 2ℓ2c ≡ 1 + 1− 2 ≡ 0 mod 4. Hence 4ℓ2c divides the numerator and
so it is integral.

Next we show matrices in Sp,ℓ,n give rise to orders.

Lemma 9. Continuing from above, take a basis matrix in Sp,ℓ,n, and let e0, ..., e3
be the quaternions corresponding to the 4 columns. Then the Z-lattice O =
⟨e0, ..., e3⟩Z is an order.

Proof. We have 1 ∈ O as 1 = 2e0 − e2 − δ(2 ∤ C)e3. Also O is clearly full-rank
as a lattice, since the basis matrix in lower triangular form has all diagonal
entries non-zero. Hence it is sufficient to show O is closed under multiplication,
for which it is enough to prove es · et ∈ O for all 0 ≤ s, t ≤ 3. For ease of
verification, the full proof is done symbolically in SageMath and can be found in
file prf_order.ipynb. To give one example, in the case of a < 0 one may verify
that,

e2 · e3 = p(2λ6 + 1)(−2Ce0 + (4λ6 + 2)e1 + (−2A+C)e2 +Cδe3)− (2λ4 + 1)e3,

and in the case a ≥ 0,

e2 ·e3 = p(−2ℓbCe0+2ℓ2ne1+(−2ℓbA+ℓbC)e2+(ℓbCδ+2AC−(2µ3+1)2B)e3),

where λ4, λ6 and µ3 are integral values from the previous lemma, and δ := δ(2 ∤
C). The expressions on the right-hand side are clearly integral linear combina-
tions of ei and so e2 · e3 ∈ O.

And we also argue O is maximal.

Lemma 10. Continuing from above, O is a maximal order.

Proof. Consider the change of basis matrix T taking the basis of O1728 to the
basis of O. As matrices this is MO1728

= MO ·T . It is easy to see det(MO1728
) = 1

4
and det(MO) = 1

2 ·
1

2ℓa+b · ℓa · ℓb = 1
4 so det(T ) = 1. By [17, Lemma 15.2.5],

det(T ) = 1 implies disc(O) = disc(O1728). As all maximal orders in Bp,∞ have
the same discriminant and O1728 is maximal, this implies O is maximal.

Now consider connecting ideals from O1728 to O, which certainly exist as
both O1728 and O are maximal. Recall connecting ideals between two orders are
all equal up to scaling by elements of Q (see [13, Lemma 8]). Hence there is
exactly one such connecting ideal which is cyclic (and integral) which we call I.
Equivalently, I is the smallest norm (integral) connecting ideal from O1728 to O.
We now show I has norm ℓn.



Lemma 11. Continuing from above, the cyclic connecting ideal I from O1728

to O, has norm ℓn.

Proof. First we show N(I) ≥ ℓn. In the case a ≤ 0 we have b = n so the smallest
multiple of k in the order is ℓnk. This means for any r < ℓn we have rk ̸∈ O.
Since N(I) ·O1728 ⊆ O and k ∈ O1728, we must have N(I) ·k ∈ O, which implies
N(I) ≥ ℓn. In the case a > 0, we have a+ b = n so e11 = 1

2ℓn . As in the previous
section, we again use the result of [3, Lemma 5.2], which states for the right
order O of an O1728-ideal I, the denominators of the basis coefficients of O all
divide 2 ·N(I). Applied to e11 we get ℓn | N(I) and hence N(I) ≥ ℓn.

We now prove ℓnO1728 ⊆ O by showing ℓn multiples of each of the 4 basis
vectors of O1728 lie in O. For the first of these we get,

ℓn + ℓnj

2
=

®
ℓne0 + ℓn(−ℓcλ6 + λ7 − 1)e2 − (ℓnω3 − C(λ7 − 1))e3 when a < 0

ℓne0 − µ3ℓ
be2 − (ℓnω3 − C(ℓbµ3 + µ4 − 1))e3 when a ≥ 0

where in the relevant case λ6, λ7, ω3, µ3, µ4 are integral by Lemma 8. This shows
ℓn+ℓnj

2 can be written as an integral linear combination of et so it lies in O. We
address the remaining cases in the SageMath code file prf_int.ipynb. Having
shown ℓnO1728 ⊆ O we must have O1728∩O ⊆ ℓnO1728 and hence by [13, Lemma
8] N(I) ≤ ℓn. This proves N(I) = ℓn.

It remains to show each matrix in Sp,ℓ,n arises from a distinct maximal order.
To be clear, distinct means they are different as lattices, and does not mean non-
isomorphic.

Lemma 12. Every matrix in Sp,ℓ,n arises from a distinct maximal order.

Proof. From the ranges of A,B,C it is clear that 0 ≤ est < ett for all 0 ≤ s, t ≤ 3.
This means the matrices are all in lower triangular Hermite Normal Form which
is unique for every quaternion order. Hence two distinct matrices cannot give
the same order.

This completes the proof of Theorem 1.

4 Structural result for ℓn ideals

In this section we prove the following result, again using the basis matrix notation
of Section 2.2.

Theorem 2. Take odd primes p ̸= ℓ with p ≡ 3 mod 4 and an integer n ≥ 1.
Then the set of cyclic left-ideals I ⊆ O1728 of norm ℓn is exactly given by the set
of basis matrices, á

1
2 0 0 0

−C
2

ℓn−a−b

2 0 0
Bℓa+c−2AC

2ℓc A ℓa+b 0

− 2A+BCℓa+c

2ℓc
Bℓa+c

2 Cℓa+b ℓn

ë



where (a, b, c, A,B,C) satisfy the conditions given in the previous section (see
Definition 1). The right order of each ideal I is the order with the basis matrix
as stated in Theorem 1.

We start by fixing odd primes p ̸= ℓ with p ≡ 3 mod 4 and an integer n ≥ 1
as in the statement. Take an arbitrary cyclic left O1728-ideal J of norm ℓn and
its right order O. By Theorem 1 there is a unique tuple (a, b, c, A,B,C) from the
HNF basis of O, satisfying the conditions of Definition 1. Moreover the theorem
states by varying J (or equivalently O) we obtain all possible tuples satisfying
these conditions. Hence taking I to be Z-lattice defined by the basis matrix in
the statement of Theorem 2, to prove Theorem 2, it is enough to show I = J .
We first show I is a left O1728-ideal and right O-ideal.

Lemma 13. Continuing from above, I is an (integral) left-ideal of O1728.

Proof. Let e0, e1, e2, e3 denote the 4 basis vectors corresponding to the columns
of the basis matrix defining I. Let f0, f1, f2, f3 denote the basis vectors 1+j

2 ,
i+k
2 , j, k of O1728. To show I is integral we show I ⊆ O1728 which amounts

to showing et ∈ O1728 for t = 0, 1, 2, 3. To do this, one may write each et as a
linear combination of f0, ..., f3. This is made easier using the integral values of
ωi, λi, µi from Lemma 8. We only give one example here, however all the cases
are given in SageMath code file prf_left_ideal.ipynb for easy verification. To
show e0 ∈ O1728, for a < 0 we have,

e0 = f0 − Cf1 + (ℓcλ4 − ℓcλ6 + λ7 − 1)f2 + (ω3 − ℓnλ1 + δ(2ω2λ7 − ω2 − λ7))f3

and when a ≥ 0,

e0 = f0 − Cf1 + (ω2 + µ3B −AC − 1)f2 − (µ3BC +A+ C(ω2 − 1))f3,

where all coefficients are integral.
As I has a basis matrix in lower-triangular form with non-zero diagonal

entries, it is clearly full-rank. To complete the proof it remains to show for every
α ∈ O1728 and β ∈ I, we have αβ ∈ I. Since α and β can be written as a
linear combination of fs and et respectively, it is enough to show fs · et ∈ I for
s, t ∈ {0, 1, 2, 3}. We do this by writing fs · et as integral linear combinations of
et. Again, see the SageMath code file prf_left_ideal.ipynb for the complete
list of relations.

Lemma 14. Continuing from above, I is an (integral) right-ideal of O.

Proof. We follow the same structure as the precious proof. Let g0, g1, g2, g3 be
the basis vectors O, from the columns of the basis matrix given in Theorem 1.
To show I ⊆ O we must write et as linear combinations of gs. Then to show I
is a right-ideal of O we must show et · gs ∈ I by writing the 16 combinations of
et · gs as linear combinations of et. See SageMath file prf_right_ideal.ipynb

for verification.

We can now complete the proof.



Proof. Proof of Theorem 2 Continuing from above, recall we must argue I = J .
Since I is a left O1728-ideal and right O-ideal with O1728 and O maximal, this
means Oleft(I) = O1728 and Oright(I) = O. Hence I is a connecting ideal from
O1728 to O. We also know J is a cyclic connecting ideal from O1728 to O, and
by [13, Lemma 8] there is only one connecting ideal which is cyclic. Therefore
to show I = J we must show I is cyclic. This is obvious from the first column
of the basis matrix of I, as it corresponds to a quaternion integer e0 ∈ I with
reduced trace Tr(e0) = 1. For I to be non-cyclic, I

g would have to be an integral

ideal for some integer g ≥ 2, so e0
g ∈

I
g is a quaternion integer, so Tr( e0g ) =

1
g is

integral, which is a contradiction. Hence I is cyclic.

5 Special Cases

We now give some further results and special cases of the structural results of
the previous two sections.

In Section 5.1 we discuss how the results simplify when ℓ ≡ 3 mod 4 and
additionally when p is a square modulo ℓ. In Section 5.2 we give simplified results
for the case n = 1, i.e. considering the bases of ideals of a prime norm ℓ, and
their right orders. In Section 5.3 we briefly discuss how to obtain upper triangular
basis matrices instead of lower triangular. And in Section 5.4 we explain how
the previous results can apply to all norm ℓn left O1728-ideals and their right
orders, not just cyclic ideals.

5.1 Case ℓ ≡ 3 mod 4

When ℓ ≡ 3 mod 4 we obtain the following simplifications of Theorems 1, 2.

Proposition 1. Let p ̸= ℓ be odd primes with p ≡ 3 mod 4 and take n an
integer with n ≥ 1. Let (A,B,C, a, b, c) satisfy the conditions of Definition 1.
Also suppose ℓ ≡ 3 mod 4, then,
1. a ≥ 0 and c = 0,
2. in Theorem 2 (but not Theorem 1) we may replace C with 0,
3. and if p is a square modulo ℓ, then (a, b, c) = (0, n, 0).

Proof. (1) Suppose for contradiction a < 0. Then c > 0 so ℓ2c | C2 + 1 implies
C2 ≡ −1 mod ℓ and so −1 is a square mod ℓ. This is a contradiction as −1 is
a square mod ℓ if and only if ℓ ≡ 1 mod 4.

(2) For a ≥ 0 we have a + b = n so in Theorem 2 we may subtract C
multiples of the 4th column from the 3rd. This replaces the C in the 3rd column
with 0. Similarly add C multiples of the 2nd column to the 1st column, which
is equivalent to replacing C in the first column with 0.

(3) By point (1) a ≥ 0, c = 0 and a + b = n. Assume for contradiction that
a > 0 so n− b ≥ 1. By definition of α we have αp ≡ −1 mod 2ℓn. Then ℓn−bB
being a square root of α − 4A2 modulo 2ℓ2n means ℓ2(n−b)B2p ≡ αp − 4A2p ≡
−1−4A2p mod 2ℓn. As ℓ | ℓ2(n−b), this reduces to 4A2p ≡ −1 mod ℓ, where on



the left-hand side 4, p and A2 are all squares modulo ℓ hence 4A2p is a square
mod ℓ, whereas on the right, −1 is not a square. This is a contradiction. To
conclude we therefore have a = 0 and a+ b = n so b = n.

5.2 Case n = 1 - Prime norm ideals

As before take odd primes p ̸= ℓ with p ≡ 3 mod 4. We now give HNF basis
matrices for the set of right orders of left O1728-ideals of norm ℓ, followed by
basis matrices of the norm ℓ ideals themselves.

Theorem 3. Take odd primes p ̸= ℓ with p ≡ 3 mod 4. Define Z-lattices O1(x),
O2(x), and O3(x, y, z) from basis matricesÜ 1

2 0 0 0
0 1

2 0 0
1
2ℓ 0 1

ℓ 0
x+δ(2∤x)·ℓ2

2ℓ
ℓ
2

x
ℓ ℓ

ê
,

Ü
1
2 0 0 0
0 1

2ℓ 0 0
ℓ
2

x
ℓ ℓ 0

0 1
2 0 1

ê
,

Ü 1
2 0 0 0
0 1

2ℓ 0 0
1
2

x
ℓ 1 0

z+δ(2∤z)·ℓ
2

y
2ℓ z ℓ

ê
.

Then the set of maximal orders O such that O is the right order of a left-ideal I ⊆
O1728 of norm ℓ, is exactly given by the disjoint union of basis matrices: O1(x)
for 0 ≤ x < ℓ2 with x2 ≡ −1 mod ℓ2; O2(x) for 0 ≤ x < ℓ2 with 4p · x2 ≡ −1
mod ℓ2; and O3(x, y, z) for 0 ≤ x < ℓ, 0 ≤ y < 2ℓ2 with 1 + 4px2 ≡ −py2 ̸≡ ℓ2

mod 2ℓ2 and 0 ≤ z < ℓ is the unique solution to 2x+ y · z ≡ 0 mod ℓ.

Proof. Follows from Theorem 1. Take (A,B,C, a, b, c) satisfying the conditions,
then for n = 1 we have either (a, b, c) = (−1, 1, 1), (1, 0, 0) or (0, 1, 0).

When (a, b, c) = (−1, 1, 1) we have 0 ≤ A < ℓn+a = ℓ1−1 = 1 so A = 0. Also
ℓ2 = ℓ2c | C2 +1 and 0 ≤ C < ℓb+c = ℓ2. From 2A+BC ≡ 0 mod ℓb+c = ℓ2 we
get 2 · 0 +B(−1) ≡ 0 mod ℓ2 so ℓ2 | B. Since 0 ≤ B < 2ℓ2b = 2ℓ2 and B is odd
we have B = ℓ2. Relabelling C with x, the basis matrices from Theorem 1 with
(a, b, c) = (−1, 1, 1) are exactly the basis matrices O1(x) for the conditions on x
in the statement.

For (a, b, c) = (1, 0, 0) we have 0 ≤ C < ℓb+c = 1 so C = 0. Also 0 ≤ B <
2ℓ2b = 2 and B odd implies B = 1. The range on A becomes 0 ≤ A < ℓ2

and we know ℓ2 = ℓ2(n−b) | α − 4A2 so solving α − 4A2 ≡ 0 mod ℓ2 is enough
to determine the values of A. Multiplying through by p yields pα − 4pA2 ≡ 0
mod ℓ2 and by the definition of α we have αp ≡ −1 mod 2ℓ2 so certainly 4pA2 ≡
−1 mod ℓ2. Relabelling A with x gives exactly the basis matrices O2(x) for the
conditions on x in the statement.

Lastly, for (a, b, c) = (0, 1, 0), relabelling A,B,C with x, y, z gives exactly
the basis matrices O3(x, y, z) in the statement. One must carefully check the
conditions on A,B,C align with the conditions given above on x, y, z. The con-
dition that B is a square root of α − 4A2 modulo 2ℓ2n = 2ℓ2 is equivalent to
y2 ≡ α−4x2 mod 2ℓ2. Then multiplying by p and using the definition of α gives
1+4px2 ≡ −py2 mod 2ℓ2. This relation also forces y to be odd, and hence B to
be odd, as is required. The relation ℓ2c | 1 +C2 is also trivially true with c = 0.



We included the condition y2 ̸≡ ℓ2 mod 2ℓ2 as then z is uniquely defined by x
and y. Removing it and replacing ‘the unique solution’ with ‘a solution’ yields
an equivalent statement.

Theorem 4. Take odd primes p ̸= ℓ with p ≡ 3 mod 4. Define Z-lattices I1(x),
I2(x), and I3(x, y) from basis matricesÜ

1
2 0 0 0

ℓ−x
2

ℓ
2 0 0

1
2 0 1 0

ℓ+x
2

ℓ
2 x ℓ

ê
,

Ü
1
2 0 0 0
0 1

2 0 0
ℓ
2 x ℓ 0

ℓ− x ℓ
2 0 ℓ

ê
,

Ü
1
2 0 0 0
0 1

2 0 0
y
2 x ℓ 0

ℓ− x y
2 0 ℓ

ê
.

Then the set of left O1728-ideals of norm ℓ is exactly given by the disjoint union
of basis matrices: I1(x) for 0 ≤ x < ℓ with x2 ≡ −1 mod ℓ; I2(x) for 0 ≤
x < ℓ with 4px2 ≡ −1 mod ℓ; and I3(x, y) for 0 ≤ x < ℓ, 0 ≤ y < 2ℓ2 with
1 + 4px2 ≡ −py2 ̸≡ ℓ2 mod 2ℓ2. For orders O1(x), O2(x), and O3(x, y, z) from
Theorem 3, the connecting ideals of norm ℓ from O1728 are I1(x), I2(x), and
I3(x, y) respectively.

Proof. From the previous proof there are 3 cases with (a, b) = (−1, 1), (1, 0)
or (0, 1). For (a, b) = (−1, 1), the right orders of norm ℓ ideals were exactly
the lattices O1(x) for the values of x given, with the tuples (A,B,C, a, b, c) from
Theorem 3 corresponding to (0, ℓ2, x,−1, 1, 1). We simply substitute these values
into Theorem 2 to achieve the result. The same applies to cases (a, b) = (1, 0)
and (0, 1).

We also apply some further steps to simplify the results. Suppose the resulting
basis matrix has columns c1, c2, c3, c4. In case (a, b) = (−1, 1) we apply column
operations c2 7→ c2 − ℓ−1

2 c4 and c1 7→ c1 + c2 − ℓ−1
2 c3 + (x − ℓ−1

2 )c4. In case
(a, b) = (1, 0) we apply c1 7→ c1+c4. In case (a, b) = (0, 1) we apply e′3 7→ c3−zc4
then c′1 7→ c1 + zc2 + c4, and variable z can be removed. Lastly we observe in
all cases, by applying column operations, the conditions on x (and y, z) can be
taken with smaller moduli. For instance in the case of I1, x need only be defined
modulo ℓ, as we can add multiples of column 4 to column 3, and multiples of
column 2 to column 1.

Remark 1. By Proposition 1 when ℓ ≡ 3 mod 4 cases O1(x) and I1(x) never
occur in Theorems 3, 4. Similarly when p is a square modulo ℓ the relation
4px2 ≡ −1 mod ℓ has no solutions as −1 is a non-square, so cases O2(x) and
I2(x) never occur. Combining these, when both ℓ ≡ 3 mod 4 and p is a square
mod ℓ, only cases O3(x, y, z) and I3(x, y) occur.

5.3 Upper triangular basis matrices

In Theorem 1 and subsequent results we only gave ideal and order basis matrices
in a lower triangular form. One may also wish to consider basis matrices in upper
triangular form. It is possible to transform the lower triangular matrices into
upper triangular using matrix operations. We now give one example of this.



Proposition 2. The basis matrix of Theorem 1, i.e. of right orders of cyclic
norm ℓn left O1728-ideals, can be replaced with the following upper triangular
matrix in the case a ≥ 0,Ü

1 0 1
2

−p(2A+BC)
2ℓn+c

0 ℓn−c −pA p(2AC−B)
2ℓn+c

0 0 ℓc

2 − C
2ℓn

0 0 0 1
2ℓn

ê
.

Proof. Fix an order O given by the basis matrix in Definition 1 for which a ≥ 0
and let (et) denote it’s basis. As O is an order we know 1 ∈ O and since i ∈ O1728

and the connecting ideal to O0 has norm ℓn, we have ℓni ∈ O. Also as a ring we
have e1e2, e1e3, e2e3 ∈ O. Hence, we may extend the basis matrix of O to the
spanning set 1, ℓni, e1e2, e1e3, e2e3. This corresponding 4 × 8 matrix can then
be reduced to a 4 × 4 matrix followed by columns of 0s via integral column
operations. We do this in such a way that yields the upper triangular matrix
given above, using Lemma 8 to ensure the column operations are integral. The
reduction is given in SageMath code file prf_up_tri.ipynb.

5.4 Non-cyclic ideals

Next we consider the requirement of ideals to be cyclic in Theorems 1, 2. In
particular, upon removing the cyclic condition, how would the result, and the
relations on variables (A,B,C, a, b, c) change? One immediate consequence is
the proof of Lemma 7 would not hold, so we would not necessarily have either
a+ b = n or b = n. In turn, this would have broken the proof of Lemma 11 for
which a fix is not obvious. There is however a simple observation that addresses
the bases of non-cyclic ideals, which we now give.

Remark 2 (Non-cyclic ideals). Suppose we want to describe the basis of the right
order of an arbitrary norm ℓm (integral) left O1728-ideal which may or may not
be cyclic. Let I denote such an ideal. There exists some integer g ≥ 1 such that
I
g is a cyclic left O1728-ideal, and N( Ig ) = N(I)/g2 ∈ Z. Hence we may write

g = ℓr for some r ≥ 0. Since I
ℓr is a cyclic left O1728-ideal of norm ℓm−2r, its

right order is of the form in Theorem 1 with n = m − 2r. In the definition of
right order, scalars don’t change anything, meaning the right order Oright(I) is
equal to the right order Oright(

I
ℓr I). In other words, to obtain all possible right

orders of norm ℓm left O0-ideals, we use Theorem 1 for each r ≥ 0 such that
m− 2r ≥ 0. The same argument applies to the bases of all ideals I of norm ℓm;
we use Theorem 2 with n = m− 2r ≥ 0 for each r ≥ 0, although in this case we
must multiply the ideal basis by ℓr.

6 Parametrization Results

Recall in Theorems 1, 2, we gave basis matrices of all cyclic norm ℓn ideals I from
O1728 and their right orders O, in terms of variables (A,B,C, a, b, c) satisfying



a set of conditions. The basis matrices of O and I were precisely,Ü 1
2 0 0 0
0 1

2ℓa+b 0 0
ℓa

2
A
ℓn ℓa 0

C+δ(2∤C)·ℓb+c

2ℓc
B
2ℓb

C
ℓc ℓb

ê
and

á
1
2 0 0 0

−C
2

ℓn−a−b

2 0 0
Bℓa+c−2AC

2ℓc A ℓa+b 0

− 2A+BCℓa+c

2ℓc
Bℓa+c

2 Cℓa+b ℓn

ë
.

We will denote these Z-lattices as O(A,B,C, a, b, c) and I(A,B,C, a, b, c) respec-
tively.

We now show in the case that −p is a square modulo ℓ, these variables can
essentially all be written in terms of a single variable d. Also the base ℓ expansion
of d specifies ‘directions’ at each step along the walk in the quaternion ℓ-ideal
graph. Our result can be stated as follows.

Theorem 5. Fix odd primes p ̸= ℓ with p ≡ 3 mod 4 and −p a square modulo
ℓ. Take an integer n ≥ 1. Also fix an r such that r2 ≡ −p mod ℓ2n. All ideals
below are cyclic norm ℓn left O1728-ideals.
A. We generate distinct ideals I and their right orders O, with a ≥ 0, as follows.

For every 0 ≤ d ≤ ℓn − 1 such that ℓ ∤ d2 + 1, define a ≤ n maximal
such that ℓa | d, and let d′ = d

ℓa . Let x, y, z be the unique solutions to
x · 2r(d2 + 1) ≡ d2 − 1 mod ℓ2n, y · r(d2 + 1) ≡ −d′ mod ℓ2n−2a and
z · 2d′ ≡ d2 − 1 mod ℓn−a. Then (Case 1), I(x, 2y + ℓ2n−2a, z, a, n − a, 0)
and O(x, 2y+ℓ2n−2a, z, a, n−a, 0) are norm ℓn ideals and their right orders.
Also when a > 0 we obtain additional distinct ideals and orders from (Case
2), I(−x, 2y + ℓ2n−a, ℓn−a − z, a, n − a, 0) and O(−x, 2y + ℓ2n−2a, ℓn−2a −
z, a, n− a, 0).

B. We generate distinct ideals I and their right orders O with a < 0 as follows.
For this we must have ℓ ≡ 1 mod 4 (by Proposition 1) so fix an r−1 with
r2−1 ≡ −1 mod ℓ2n. For every 0 ≤ d ≤ ℓn − 1 with ℓ | d define c ≤ n

maximal such that ℓc | d. If d = 0 set d′ = 1, otherwise set d′ = d
ℓc . Let

x, y, z be the unique solutions to x · 4rd′ ≡ d2 + 1 mod ℓ2n, y · 4rd′ ≡
r−1(d

2 − 1) mod ℓ2n and z · (d2 − 1) ≡ r−1(d
2 + 1) mod ℓn+c. Then (Case

1) I(x, 2y+ ℓ2n, z,−c, n, c) and O(x, 2y+ ℓ2n, z,−c, n, c) are norm ℓn ideals
and their right orders. And (Case 2) so are I(−x, 2y+ ℓ2n, ℓn+c−z,−c, n, c)
and O(−x, 2y + ℓ2n, ℓn+c − z,−c, n, c).

C. Every norm ℓn cyclic ideal from O1728 is generated by either point A or point
B. And hence so are all right orders of such ideals.

D. Let I be an ideal generated from Part A. or B. from value d. Consider the
base ℓ expansion d =

∑n−1
r=0 drℓ

r. Viewing I as an ℓ-isogeny walk, the values
dr can be considered a choice of direction at each step. This means for any
decomposition I = I1I2 with N(I1) = ℓm and N(I2) = ℓn−m, the ideal I1
arises from the same construction (Part A. or B., Case 1 or 2) replacing n

with m, and d with
∑m−1

r=0 drℓ
r.

This result is a generalisation of the results of [1].

Remark 3. Take odd primes p ̸= ℓ, and an integer n ≥ 1. Suppose we are in the
special case of ℓ ≡ 3 mod 4 and p = 4ℓef − 1 where e ≥ 1 and n ≤ e. Then the



parametrization of ideals in Theorem 5 is the same as [1, Proposition 3.3] using
the same value d. Although note the definitions of O1728 differ, by switching the
roles of j and k. Our Case 1 and Case 2 correspond to their “d0 ̸= ∞” and
“d0 = ∞” cases. Our variables A,B,C correspond to their variables α, β with
A ≡ α mod ℓn and Bℓa

2 ≡ β mod ℓn, and C ≡ 0 mod ℓn (recall Proposition 1
point (2)). Using their results, the directions represented by values d0, ..., dn−1

in the ℓ expansion of d, can be interpreted as 2 × 2 matrix multiplications in a
Bruhat-Tits tree Also the kernel generator of the corresponding ℓn-isogeny can
be expressed in terms of d and a special choice of ℓe-torsion basis of E1728.

The remainder of this section is dedicated to proving Theorem 5.

6.1 Proof of Theorem 5 Part A..

Throughout this section we will take (A,B,C, a, b, c) to be a tuple generated by
Theorem 5 Part A. using an integer 0 ≤ d ≤ ℓn−1, so a ≥ 0. This is either (Case
1) (x, 2y+ ℓ2n−2a, z, a, n−a, 0) or (Case 2) (−x, 2y+ ℓ2n−a, ℓn−a− z, a, n−a, 0).
First notice that A and B are not necessarily in the ranges needed to apply
Theorem 5, as for instance for A = x (in Case 1) we have 0 ≤ A ≤ ℓ2n when we
need 0 ≤ A < ℓn+a for the theorem. We use the following observation to address
this.

Lemma 15. For any k1, k2 ∈ Z, let A′ = A+k1ℓ
n+a and B′ = B+k12Cℓb−c+

k22ℓ
2b then, O(A,B,C, a, b, c) = O(A′, B′, C, a, b, c), and I(A,B,C, a, b, c) =

I(A′, B′, C, a, b, c), providing ℓ2c | C2 + 1.

Proof. See code file prf_AB_prime.ipynb for verification. The first relation
comes from examining the basis matrix of O(A,B,C, a, b, c) and applying the
unimodular column operation c′2 = c2 + k1c3 + k2c4. The second comes from the

basis matrix of I(A,B,C, a, b, c) applying c′2 = c2 + k1ℓ
n−bc3 + (k1C

1−ℓa+c

ℓc +

k2ℓ
b)c4 and c′1 = c1 + (k1C

1−ℓa+c

ℓc + k2ℓ
b)c3 + (k1

C2+1
ℓ2c (ℓa+c − 2)− 2k1

1−ℓa+c

ℓ2c −
2k2Cℓb−c)c4, where

1−ℓa+c

ℓc and 1−ℓa+c

ℓ2c are integral in both cases a ≥ 0, c = 0
and a < 0, c = −a.

In Part A., with a ≥ 0, since c = 0 the condition ℓ2c | C2 + 1 is trivially true.
From now on we fix k1 such that 0 ≤ A′ < ℓn+a, and k2 such that 0 ≤ B′ < 2ℓ2b

so A′ and B′ are within the desired ranges. To prove Theorem 5 Part A., we will
show the tuple (A′, B′, C, a, b, c) satisfies all the conditions of Definition 1 so we
may apply Theorems 5 and 2.

Lemma 16. Continuing from above we have:
1. B′ is odd,
2. 2A′ +B′C ≡ 0 mod ℓn−a,
3. and pB′2ℓ2a ≡ −1− 4pA′2 mod 2ℓ2n.

Proof. Since B = 2y + ℓ2n−2a and B′ = B + k12Cℓn−a + k22ℓ
2n−2a, both are

clearly odd.



Now we prove A+ yC ≡ 0 mod ℓn−a. Recall we have either (A,C) = (x, z)
(Case 1) or (A,C) = (−x, ℓn−a−z) (Case 2). It is sufficient to prove this relation
for (A,C) = (x, z) as Case 2 holds by multiplying by −1. Since ℓ ∤ d2 + 1 the
claim is equivalently, 2r(d2 + 1)x+ r(d2 + 1)y · 2z ≡ 0 mod ℓn−a. By definition
of x and y the left-hand side is equivalent to (d2 − 1) − 2d′z mod ℓn−a and
applying the definition of z we get zero.

Point (2) then follows from using the definitions of A′, B′ and B, and sub-
tracting the relationA+yC ≡ 0 mod ℓn−a. The relation then becomes 2k1ℓ

n+a+
(ℓ2n−2a + k12Cℓn−a + k22ℓ

2n−2a)C ≡ 0 mod ℓn−a, which is clearly true.
Next we prove pB2ℓ2a ≡ −1 − 4pA2 mod ℓ2n. In either case of A = ±x we

have A2 = x2. Also B2ℓ2a = (2y + ℓ2n−2a)2ℓ2a ≡ 4y2ℓ2a mod ℓ2n. Multiplying
through by (d2 + 1)2 and noting r2 ≡ −p, the claim can then be rewritten as
−4(r(d2+1)y)2ℓ2a ≡ −(d2+1)2+(2r(d2+1)x)2 mod ℓ2n. Using the definitions
of x, y and d′ this is equivalent to −4d2 ≡ −(d2+1)2+(d2−1)2 mod ℓ2n, which
clearly holds.

Finally we prove point (3). Since B′ is odd the result is trivially true modulo
2, and so by Chinese Remainder Theorem it is then sufficient to prove it modulo
ℓ2n. Using the definitions of A′, B′ the statement may be written as,

p(Bℓa + k12Cℓn + k22ℓ
2n−a)2 ≡ −1− 4p(A+ k1ℓ

n+a)2 mod 2ℓ2n

expanding the brackets gives,

p(B2ℓ2a + 4k1BCℓn+a) ≡ −1− 4p(A2 + 2k1Aℓn+a) mod 2ℓ2n.

Since we proved the same statement above for A,B we may subtract it, reducing
proving point (3) to showing,

4pk1BCℓn+a ≡ −8pk1Aℓn+a mod ℓ2n.

Using the definition of B, and dividing through this is equivalent to k1(A+Cy) ≡
0 mod ℓn−a, which we previously showed was true.

Corollary 1. The Z-lattice I(A,B,C, a, b, c) is a cyclic norm ℓn left O1728-ideal
with right order O(A,B,C, a, b, c).

Proof. The construction of (A′, B′, C, a, b, c), together with the previous lemma
shows it satisfies all the conditions of Definition 1. Hence by Theorem 5,O(A′, B′, C, a, b, c)
is the right order of a norm ℓn ideal fromO1728. And by Theorem 2, I(A′, B′, C, a, b, c)
is the connecting ideal. Then Lemma 15 shows we can replace A′, B′ with A,B.

We now complete the proof of Theorem 5 Part A..

Lemma 17. The ideals/orders generated in the statement of Theorem 5 Part A..

Proof. Suppose from the statement of Part A. we generate two tuples (Ai, Bi, Ci, ai, n−
ai, 0) from integers di for i = 1, 2 which result in the same order. Also note for
each i we are either in Case 1, with Ai = xi, Ci = zi, or Case 2, with Ai = −xi,



Ci = ℓn−ai − zi. Now use Lemma 15 to reduce them to (A′
i, B

′
i, Ci, ai, n− ai, 0)

with A′
i, B

′
i in the correct ranges as we did previously. We’ve already shown these

tuples satisfy the conditions to apply Theorem 1. And recall the theorem states
a bijection between such tuples and orders, hence since the orders are equal, the
tuples are equal, i.e. A′

1 = A′
2, B

′
1 = B′

2, C := C1 = C2, a := a1 = a2. Without
loss of generality we may consider three cases: for i = 1, 2 we are in Case 1; for
i = 1, 2 we are in Case 2; or for i = 1 we are in Case 1, and for i = 2 are in Case
2. In each case we prove the result by obtaining a contradiction from d1 ̸= d2.

For both in Case 1, we have A′
i ≡ xi mod ℓn+a so x1 ≡ x2 mod ℓn+a. By

definition of xi this means (d22 + 1)(d21 − 1) ≡ (d21 + 1)(d22 − 1) mod ℓn+a which
expanded gives d21 ≡ d22 mod ℓn+a. Also note d1, d2 ̸= 0 since if one is zero we
have a = n so a1 = n and a2 = n which is only possible if d1 = d2 = 0. Hence
there are exactly two square roots of d22 modulo ℓn+a and these are d1 ≡ ±di
mod ℓn+a. Since 0 ≤ di ≤ ℓn − 1, a ≥ 0, and d1 ̸= d2 we have d1 = −d2. From
z1 = C1 = C2 = z2 we get (d21 − 1)d2

ℓa ≡ (d22 − 1)d1

ℓa mod ℓn−a. Substituting
in d1 = −d2 gives (d22 − 1)d2 ≡ −(d22 − 1)d2 mod ℓn implying d2 ≡ 0 mod ℓn

which by the range on d2 gives d2 = 0 which is a contradiction.

For the ideals generated from i = 1, 2 both in Case 2, we have −x1 ≡ A′
1 =

A′
2 ≡ −x2 mod ℓn+a and ℓn−a− z1 = C ′

1 = C ′
2 = ℓn−a− z2. This means we still

have x1 ≡ x2 mod ℓn−a and z1 = z2, so a contradiction arises from exactly the
same method as Case 1.

Finally for i = 1 in Case 1, and i = 2 in Case 2 we get x1 ≡ −x2 mod ℓn+a.
Hence (d22 + 1)(d21 − 1) ≡ −(d21 + 1)(d22 − 1) mod ℓn+a which expanded gives
d21d

2
2 ≡ 1 mod ℓn+a. This means ℓ ∤ d1 and ℓ ∤ d2 so a = 0. This is a contradiction

as in the statement of Theorem 5 Part A. we only generate ideals/orders in Case
2 when a > 0.

6.2 Proof of Theorem 5 Part B..

To prove Part B. we follow the same approach as the previous section. Take
(A,B,C, a, b, c) to be a tuple generated by Theorem 5 Part B. using an integer
0 ≤ d ≤ ℓn − 1, so a = −c < 0. This is either (Case 1) (x, 2y+ ℓ2n, z,−c, n, c) or
(Case 2) (−x, 2y+ ℓ2n, ℓn+c− z,−c, n, c). First we check the following condition
on C.

Lemma 18. Following from above, ℓ2c | C2 + 1.

Proof. With either C = z or C = ℓn+c − z we have C2 ∼= z2 mod ℓ2c. Then
by definition of z, C2 · (d2 − 1)2 ≡ (z(d2 − 1))2 ≡ (r−1(d

2 + 1))2 mod ℓ2c.
Rearranging this is (C2+1)(d2+1)2− 4d2C2 ≡ 0 mod ℓ2c. Noting that ℓ2c | d2
by construction, and dividing by (d2+1)2 which is coprime to ℓ, gives the result.

Similarly to before, A and B are not within the correct ranges to meet the
criteria to apply Theorem 1. However we may again apply Lemma 15, whose
proof remains the same for a < 0, and the condition ℓ2c | C2 + 1 holds. This



means defining A′ = A + k1ℓ
n+a with k1 chosen such that 0 ≤ A′ < ℓn+a and

B′ = B + k12Cℓb−c + k22ℓ
2b with k2 chosen so 0 ≤ B′ < 2ℓ2b, we have that,

O(A,B,C, a, b, c) = O(A′, B′, C, a, b, c)

and I(A,B,C, a, b, c) = I(A′, B′, C, a, b, c).

The following conditions then hold.

Lemma 19. Following from above,
• B′ is odd,
• 2A′ +B′C ≡ 0 mod ℓn+c,
• and pB′2 ≡ −ℓ2c − 4pA′2 mod 2ℓ2n.

Proof. Clearly B = 2y+ ℓ2n is odd, and so B′ = B + k12Cℓn−c + k22ℓ
2n is odd.

For point (2), with (Case 1) A = x and C = z, expanding definitions we have

(2rd′)(2A+BC) ≡ 4rd′x+ 4rd′yz mod ℓn+c

≡ (d2 + 1) + r−1(d
2 − 1)z mod ℓn+c

≡ (d2 + 1)− (d2 + 1) ≡ 0 mod ℓn+c.

An the same holds for (Case 2) A = −x and C = ℓn+c − z, hence 2A + BC ≡
0 mod ℓn+c. Then we have 2A′ + B′C ≡ 2(A + k1ℓ

n−c) + (B + k12Cℓn−c)C
mod ℓn+c. Subtracting the relation for A,B gives, 2A′+B′C ≡ (C2+1)2k1ℓ

n−c

mod ℓn+c which is zero by the previous Lemma.
For point (3) we have in both cases,

4d′2(pB2 + ℓ2c + 4pA2) ≡ −(4d′ry)2 + 4d′2ℓ2c − (4rd′x)2 mod ℓ2n

≡ (d2 − 1)2 + 4d2 − (d2 + 1)2 ≡ 0 mod ℓ2n.

Hence pB2 + ℓ2c + 4pA2 ≡ 0 mod ℓ2n. Then using the definitions of A′, B′ we
expand 4d′2(pB′2 + ℓ2c + 4pA′2) and subtract the above relation leaving,

4pk1ℓ
n−c(2A+BC + (C2 + 1)k1ℓ

n−c) ≡ 0 mod ℓ2n,

where we use the previous Lemma, and relation 2A+ BC ≡ 0 mod ℓn+c. This
relation also holds modulo 2, hence by Chinese Remainder Theorem point (3)
holds.

Combining all these results we have the following.

Corollary 2. The Z-lattice I(A,B,C, a, b, c) is a cyclic norm ℓn left O1728-ideal
with right order O(A,B,C, a, b, c).

Proof. The previous results show (A′, B′, C, a, b, c) satisfies the conditions of
Definition 1. Hence by Theorems 5 and 2, and Lemma 15 the result holds.

Just like the previous section, the following observation completes the proof
of Theorem 5 Part B..



Lemma 20. The ideals/orders generated in the statement of Theorem 5 Part B.
are all distinct.

Proof. Similar to Lemma 17. Suppose from the statement of Part B. we generate
two tuples (Ai, Bi, Ci,−ci, n, ci) from integers di for i = 1, 2 which result in
the same order. For each i, we have (Case 1) Ai = xi, Ci = zi or (Case 2)
Ai = −xi, Ci = ℓn+ci−zi. Reduce Ai, Bi to A′

i, B
′
i in the correct ranges as above.

Then by the bijection of Theorem 1 we have A′
1 = A′

2, B
′
1 = B′

2, C := C1 = C2

and c := c1 = c2.
For both tuples from Case 1, or both from Case 2, A′

1 = A′
2 and C1 = C2

give x1 ≡ x2 mod ℓn−c and z1 ≡ z2ℓ
n. Using the definitions of xi and zi these

relations give d2(d
2
1+1) ≡ d1(d

2
2+1) mod ℓn and d21 ≡ d22 mod ℓn respectively.

Since d1 ̸= d2, the second of these implies d1 ≡ −d2 mod ℓn, which substituted
into the first gives d2(d

2
2 + 1) ≡ 0 mod ℓn. Since c > 0 we know ℓ mod d2 so

ℓ ∤ d22 + 1, hence ℓn | d2. This implies d2 = 0 so c = n. This is a contradiction as
the only value d1 can take such that ℓc | d1 is d1 = 0, but d1 ̸= d2.

For the i = 1 tuple from Case 1, and i = 2 from Case 2, we have z1 ≡ −z2
mod ℓn. By definition of zi this gives, d

2
1d

2
2 ≡ 1 mod ℓn. By construction c > 0

so ℓ | di for i = 1, 2 which gives a contradiction.

6.3 Proof of Theorem 5 Part C..

We’ve previously shown the ideals generated by Part A. are all distinct, as are
those generated by Part B.. These two sets are also distinct from each other, by
the bijection of Theorem 1, since the sets contain ideals with a < 0 and a ≥ 0
respectively. We may then prove the claim that Parts A. and B. give all cyclic
norm ℓn ideals from O1728 by a counting argument, showing the sum of the sizes
of the two sets equals the total number of cyclic ℓn isogenies. This total number
is now given.

Lemma 21. For odd primes ℓ ̸= p with p ≡ 3 mod 4 there are ℓn + ℓn−1 cyclic
left-ideals of O1728 of norm ℓn.

Proof. We consider an ℓn isogeny as a decomposed chain of n ℓ-isogenies. From
[7, Proposition 1] it follows that an ℓn-isogeny is cyclic if and only if there is no
immediate backtracking in any decomposition. In the first step there are ℓ + 1
choices of ℓ-isogeny, and in subsequent steps there only ℓ as one direction is the
dual of the previous isogeny in the chain, i.e. immediately backtracking. In total
this gives (ℓ+ 1)ℓn−1 options.

We now count the number of ideals from Part A..

Lemma 22. Take p, ℓ, n as in Theorem 5. The number of ideals generated by
Part A. of the Theorem is,
• ℓn + ℓn−1 when ℓ ≡ 3 mod 4, consisting of ℓn in Case 1 and ℓn−1 in Case
2,
• And ℓn − ℓn−1 when ℓ ≡ 1 mod 4, consisting of ℓn − 2ℓn−1 in Case 1 and
ℓn−1 in Case 2.



Proof. For Case 1 we simply count the number of 0 ≤ d ≤ ℓn− 1 with ℓ ∤ d2+1.
For ℓ ≡ 3 mod 4, −1 is not a square, so this is all ℓn of them, since if ℓ | d2 + 1
we’d have d2 ≡ −1 mod ℓ which is impossible.

For ℓ ≡ 1 mod 4, we exclude the values of d where d2 ≡ −1 mod ℓ, which
are all values of d which are equal to one of the two square roots of −1 modulo
ℓ, call them r−1 and ℓ − r−1. That means excluding values d = r−1 + kℓ and
ℓ − r−1 + kℓ for 0 ≤ k < ℓn−1, which is 2ℓn−1 values. This means we have
ℓn − 2ℓn−1 distinct ideals.

For Case 2 we count all 0 ≤ d ≤ ℓn − 1 with ℓ | d and ℓ ∤ d2 + 1. Since the
second condition is implied by the first we just count d with ℓ | d and there are
always ℓn−1 of them.

The number of ideals from Part B. is then as follows.

Lemma 23. Take p, ℓ, n as in Theorem 5. The number of ideals generated by
Part B. of the Theorem is 2ℓn−1 when ℓ ≡ 1 mod 4 and 0 otherwise.

Proof. By the statement of Theorem 5 Part B. we require ℓ ≡ 1 mod 4 for r−1

to exist. For each 0 ≤ d < ℓn with ℓ | d we generate two ideals, one in Case 1,
and one in Case 2. This gives a total of 2ℓn−1.

This completes the proof as the counts of Lemmas 22 and 23 sum to that of
Lemma 21.

6.4 Proof of Theorem 5 Part D..

We first give a classical result on cyclic ideal decomposition.

Lemma 24. Let I be a cyclic integral left O-ideal for a quaternion order O,
with N(I) = N1N2. Let I1 = I + ON1 and I2 = I1I

N1
= I + Oright(I)N2. Then

I = I1I2, and I1, I2 are cyclic integral ideals of norms N1 and N2 respectively.

Proof. Expanding definitions one can check I = I1I2 holds. The ideals are inte-
gral as I1 ⊆ O and I2 ⊆ Oright(I), and cyclic as I is cyclic. To show their norms
are as claimed, note that for any cyclic integral ideal J we have Z∩J = N(J) ·Z.

We can now prove Part D. of the Theorem.

Proof of Theorem 5 Part D.. We prove the result for ideals generated by Part B.
first. Take some integer 0 ≤ d < ℓn with ℓ-expansion d =

∑n−1
r=0 drℓ

r, and let

d̃ =
∑m−1

r=0 drℓ
r. By Part B. of the Theorem, generate values c, x, y, z from d

and c̃, x̃, ỹ, z̃ from d̃. Then (in Case 1 or 2) we obtain tuples (A,B,C, a, b, c) and
(Ã, B̃, C̃, ã, b̃, c̃) from d and d̃ respectively, which give norm ℓn and ℓm ideals I
and I1. By Lemma 24 we know that I + O1728ℓ

m is a cyclic integral ideal of
O1728 of norm ℓm such that I = (I +O1728ℓ

m) · I2 for some cyclic integral ideal
I2. Hence to prove the result we must show I1 = I + O1728ℓ

m, and since they
have the same norm it is sufficient to show the single inclusion I+O1728ℓ

m ⊆ I1.
By noting a = −c and b = n, the ideal I + O1728ℓ

m can be represented by the



following matrix, with columns representing the concatenation of the bases of I
and O1728ℓ

m,Ü 1
2 0 0 0 ℓm

2 0 0 0

−C
2

ℓc

2 0 0 0 ℓm

2 0 0
B−2AC

2ℓc A ℓn−c 0 ℓm

2 0 ℓm 0

− 2A+BC
2ℓc

B
2 Cℓn−c ℓn 0 ℓm

2 0 ℓm

ê
.

We refer to these spanning vectors (columns) as e0, ..., e7. As I1 is a norm ℓm

ideal, it also contains O1728ℓ
m, hence we can represent it with the following

matrix, á
1
2 0 0 0 0 0

− C̃
2

ℓc̃

2 0 0 ℓm

2 0
B̃−2ÃC̃

2ℓc̃ Ã ℓm−c̃ 0 0 ℓm

− 2Ã+B̃C̃
2ℓc̃

B̃
2 C̃ℓm−c̃ ℓm ℓm

2 0

ë
consisting of the basis of I with additional vectors from O1728ℓ

m ∈ I. We refer
to these vectors (columns) as f0, ..., f5. We’ll show I +O1728ℓ

m ⊆ I1 by proving
each vector ei ∈ I1 for each i. Clearly ei ∈ I1 for i = 4, ...7 as O1728ℓ

m ⊆ I1.
Also e3 = ℓn−mf3 ∈ I1. For the remaining vectors note by definition of c and c̃
we have c̃ = min(c,m). Also as d ≡ d̃ mod ℓm we have

x̃ · 4rd̃ℓc−c̃ ≡ ℓc(d̃2 + 1) ≡ ℓc(d2 + 1) ≡ x · 4rd mod ℓm

so (in both Cases) Ã · ℓc−c̃ ≡ A mod ℓm. We similarly obtain B̃ · ℓc−c̃ ≡ B
mod 2ℓm, and C̃ ≡ C mod ℓm. We may then define integers kA, kB , kC such
that A = Ãℓc−c̃ + kAℓ

m, B = B̃ℓc−c̃ + 2kBℓ
m and C = C̃ + kCℓ

m. We then
have e2 = ℓ(n−c)−(m−c̃)(f2 + kCℓ

m−c̃f3) ∈ I1 where m − c̃ < n − c so the
exponents are integral. This gives e1 = ℓc−c̃f1 + kAf5 + kBf3 ∈ I1. Next, one
can show from expanding definitions that there exists k1 such that (B−2AC

2ℓc ) =

( B̃−2ÃC̃
2ℓc̃ )+k1ℓ

m. And from the property 2A+BC ≡ 0 mod ℓn+c, since B is odd

this lifts to 2A+BC ≡ δ(2 ∤ C)ℓn+c mod 2ℓn+c. Applying the same to Ã, B̃, C̃,

there exists some integer k2 such that 2Ã+B̃C̃
ℓc̃ + kCℓ

m = 2A+BC
ℓc + 2k2ℓ

m, since

kC ≡ δ(2 ∤ C)− δ(2 ∤ C̃) mod 2. Then e0 = f0 − kCf4 + k1f5 + k2f3 ∈ I and so
I +O1728ℓ

m ⊆ I1.
Prove the result for ideals constructed from Part A. is much simpler. Using

the same notation as above, note that c = 0, b = n − a and we may replace C
and C̃ with 0 by Proposition 1. The matrices representing I +O1728 and I1 are
then,Ü 1

2 0 0 0 ℓm

2 0 0 0

0 1
2 0 0 0 ℓm

2 0 0
Bℓa

2 A ℓn 0 ℓm

2 0 ℓe 0

−A Bℓa

2 0 ℓn 0 ℓm

2 0 ℓe

ê
and

Ü 1
2 0 0 0
0 1

2 0 0
B̃ℓã

2 Ã ℓm 0

−Ã B̃ℓã

2 0 ℓm

ê
.

The inclusion is easy to see from checking ã = min(a,m), A ≡ Ã mod ℓm and
Bℓa ≡ B̃ℓã mod ℓm.



7 Application to Successive Minima of Fp curves

In this section we will apply our structural results to prove Proposition 3. This
is not an entirely new result. It was originally noted during a workshop brain-
storming session2, with the suggestion it could be proven from the results of [11].
To demonstrate the applicability of our structural results however, we give our
own proof with the main new insight being the proof of Lemma 27.

Proposition 3. Fix a prime p ≡ 3 mod 4 and let O ⊆ Bp,∞ be a maximal

quaternion order for which there is a primitive embedding of Z[ 1+
√
−p

2 ], then
the third successive minima of the Gross lattice OT is exactly p, where OT =
{2x− Tr(x) : x ∈ O}.

We prove it in three steps. The first step is to show such an order O is isomor-
phic to an order to which we can apply our structural results. This mainly comes
down to considering the behaviour of a certain group action. See Appendix A
for prerequisite results.

Lemma 25. For p ≡ 3 mod 4 and a maximal quaternion order O ⊂ Bp,∞,

with a primitive embedding of O = Z[ 1+
√
−p

2 ], and O ̸∼= O1728, there exists an
isomorphic quaternion order O′ ∼= O which is the right order of cyclic (integral)
left O1728-ideal of odd prime norm ℓ, with 1+j

2 ∈ O
′.

Proof. Let E be an Fp-rational supersingular elliptic curve with endomorphism
ring isomorphic to O, which exists under the Deuring correspondence. We know
E admits an O-orientation so we may consider the group action of Cl(O) on the
set of supersingular elliptic curves orientable by O. This is the group action used
by the CSIDH key exchange [6], although we work withO-oriented curves instead
of Z[

√
−p]-oriented curves. Let E1728 be the Fp-rational curve y

2 = x3+x which
is supersingular for p ≡ 3 mod 4, with End(E1728) ∼= O1728 (as defined earlier),
and an O-orientation ι : O ↪→ End(E1728) mapping 1 to [1] and

√
−p to the

Frobenius endomorphism. As the group action is transitive (see [6, Theorem 7])
there exists an ideal class [a] ∈ Cl(O) such that E1728 ∗ [a] = E′ ∼= E. Moreover
we can assumeN(a) = ℓ is an odd prime, since every ideal class in Cl(O) contains
infinitely many ideals of prime norm (see Lemma 29). Precisely this means there
is an isogeny φ : E1728 → E′ with kernel ∩x∈a ker(ι(x)) and N(a) = ℓ = deg(φ).
By Deuring correspondence there is a quaternion leftO1728-ideal I corresponding
to φ (see Lemma 30), with N(I) = N(a) and 1+j

2 ∈ Oright(I). As N(I) contains
no square factors, I is cyclic. Taking O′ = Oright(I) we have O′ ∼= End(E′) ∼=
End(E) ∼= O.

Now we use our structural results to show such an order O′ admits a basis
of a certain form. We use the following technical Lemma.

2 From the Leuven Isogeny Days 5 workshop at K.U. Leuven (September 2024), with
credit going to the organisers and a large group of participants.



Lemma 26. Let p be prime, and K = Q(
√
−p) with field norm n(·). Let L

be a rank 2 Z-lattice in K, where all non-zero elements of L have norm ≥ 2.
Let det(L) denote the determinant of the basis matrix of L with respect to basis
1,
√
−p of K. Then there exists a basis b1, b2 of L with n(bi) ≤ p · det(L)2 for

i = 1, 2.

Proof. Embed K into C by
√
−p 7→ √p · i, and then into R2 by i 7→ (0, 1), and

observe the norm of an element in K equals the square of the Euclidean norm
|| · || of the element mapped into R2. Under this embedding L becomes a lattice
L′ ⊂ R2. Let λ1, λ2 be the successive minima of L′ with respect to || · ||, so L
has successive minima λ2

1, λ
2
2. By Minkowski’s second theorem (see [4, Chapter

8]) applied to L′ with the unit ball in R2 we get λ1λ2 ≤ 4
π det(L′) where det(L′)

is the determinant of the matrix with columns as the basis of L′. Since λ2
1 is the

norm of the smallest non-zero element in L we have λ2
1 ≥ 2 > 16

π2 ≈ 1.62. Hence
16
π2λ

2
2 < λ2

1λ
2
2 ≤ 16

π2 det(L
′)2, so λ2

2 < det(L′)2. The result follows by definition of
2nd successive minima, and noting det(L′) =

√
p · det(L).

Lemma 27. Let O be a maximal quaternion order which is the right order of
a cyclic left O1728-ideal of prime norm ℓ, with 1+j

2 ∈ O. Suppose O ̸∼= O1728.

Then O admits a basis of the form e0, e1, e2, e3 ∈ Bp,∞ with e0 = 1, e1 = 1+j
2

and e2, e3 ∈ Qi+Qk with nrd(e2),nrd(e3) ≤ p
4 .

Proof. We know O is of the form given in Theorem 1 with n = 1. We also know
1+j
2 ∈ O, which is only possible if it is a linear combination of the basis vectors,

i.e. there exists xi ∈ Z such that,Ü
1
2
0
1
2
0

ê
=

Ü 1
2
0
ℓa

2
C+δ(2∤C)·ℓb+c

2ℓc

ê
+ x1

Ü
0
0
ℓa
C
ℓc

ê
+ x2

Ü
0
0
0
ℓb

ê
.

From the conditions on a we have a = −1, 0 or 1, which from the 3rd row gives
1
2 = 1

2ℓ +
x1

ℓ , or
1
2 = 1

2 + x1 or 1
2 = ℓ

2 + x1ℓ respectively. Clearly the last of these
is impossible.

Consider the first case of a = −1, so b = 1 and c = 1. Then the above
relation becomes ℓ = 1 + 2x1 so x1 = ℓ−1

2 . Then in the 4th entry we get 0 =
C+δ(2∤C)·ℓ2

2ℓ + C(ℓ−1)
2ℓ + x2ℓ so 0 = δ(2 ∤ C) · ℓ2 + Cℓ + x22ℓ

2. This gives Cℓ ≡ 0
mod ℓ2 so ℓ | C. This is impossible as the last condition in the theorem of
ℓ2c = ℓ2 | 1 + C2 cannot be satisfied.

Hence we must have a = 0 as it is the only possible case. It then follows that
b = 1 and c = 0. Also by the relation above we have x1 = 0 and so from the
4th row obtain C + δ(2 ∤ C)ℓ+ x22ℓ = 0 hence C ≡ 0 mod ℓ. From the bounds
on C we have 0 ≤ C < ℓ so clearly C = 0. Finally considering the relation
2A+BC ≡ 0 mod ℓb+c we have 2A ≡ 0 mod ℓ and from the bounds on A we
have 0 ≤ A < ℓ so also have A = 0. Substituting these values into the basis
matrix and conditions of Theorem 1 tells us that O admits a basis in the matrix



form, Ü
1
2 0 0 0
0 1

2ℓ 0 0
1
2 0 1 0
0 B

2ℓ 0 ℓ

ê
.

where 0 ≤ B < 2ℓ2 is an odd solution to B2 · p ≡ −1 mod 2ℓ2.
Applying unimodular column operations c3 7→ c3 − 2c1 and c3 7→ −c3, then

reordering the columns and we get a basis matrix,Ü
1 1

2 0 0
0 0 1

2ℓ 0
0 1

2 0 0
0 0 B

2ℓ ℓ

ê
.

This is almost the basis claimed, however we must minimize the norms of the last
two columns. To that end, we find a short basis of the 2-dimensional quadratic
lattice L with basis matrix,Å 1

2ℓ 0
B
2ℓ ℓ

ã
, with respect to the norm

Å
x
y

ã
7→ x2 + py2.

As the 2D basis reduction can be expressed as a 2 × 2 unimodular matrix, it’s
easy to check one may reconstruct a basis of O from,

basis matrix

Å
a b
c d

ã
of L 7−→ basis matrix

Ü
1 1

2 0 0
0 0 a b
0 1

2 0 0
0 0 c d

ê
of O,

since the change of the O basis can be expressed as a 4× 4 unimodular matrix.
Note this 2-dimensional lattice L may be viewed as lying within the quadratic
field K = Q(

√
−p). Also observe det(L) = 1

2ℓ · ℓ− 0 · B2ℓ = 1
2 and the norms of all

elements in L ⊂ K are integral as it embeds into O which consists of algebraic
integers. Hence if no elements in L have norm 1, we are done by Lemma 26. This
can be seen by instead supposing there exists α ∈ O of trace zero and norm 1,
then one may show an embedding of O1728 ↪→ O exists by taking 1+j

2 7→
1+j
2 and

i 7→ α, which since O1728 is maximal, is an isomorphism. This is a contradiction
under the assumption O ≁= O1728.

And finally we show an order with a basis in this form must satisfy the
successive minima claim.

Lemma 28. Let O ⊂ Bp,∞ be a maximal quaternion order. Suppose O has a
basis e0, e1, e2, e3 ∈ Bp,∞ with e0 = 1, e1 = 1+j

2 and e2, e3 ∈ Q + Qi + Qk with
nrd(e2),nrd(e3) ≤ p

4 . Then the 3rd successive minima of OT , denoted λ3, is
exactly p.



Proof. Since e0, e1, e2, e3 linearly span O we know {2er − Tr(er) : r = 0, ..., 3}
linearly span OT . For r = 0 note that 2e0 − Tr(e0) = 0 so we may exclude it,
which means {2er−Tr(er) : r = 1, 2, 3} span OT , which implies they have rank 3.
Then by definition we have λ3 ≤ max({nrd(2er−Tr(er)) : r = 1, 2, 3}). For r = 1
this norm is exactly p. For r = 2, 3 we get the upper bound nrd(2er −Tr(er)) ≤
nrd(2er) = 4 nrd(er) ≤ 4 · p4 = p. Therefore λ3 ≤ p.

For equality, the set {2er−Tr(er) : r = 1, 2, 3} doesn’t just span a sublattice

of OT , but spans all of OT , so is a basis of it. Write ei =
Tr(ei)

2 + ei1i+ ei2k for
i = 2, 3 The norm form of OT with respect to this basis is then,

(x1, x2, x3) 7→ nrd(x1j + x2(2e21i+ 2e22k) + x3(2e31i+ 2e32k)).

By collecting the terms with coefficients of 1, i, j, k then using the usual formula
for reduced norm, this can be written as,

(x1, x2, x3) 7→ (2x2e21 + 2x3e31)
2 + px2

1 + p(2x2e22 + 2x3e32)
2,

which is clearly positive definite. Now consider the contributions of the term
px2

1. If the form represents an element of norm strictly less than p, we must
have x1 = 0 as otherwise the term px2

1 contributes too much. Therefore all
elements in the Gross lattice with norm less than p are contained in the rank 2
sublattice (2e21i + 2e22k)Z + (2e31i + 2e32k)Z. Hence supposing if λ3 < p, the
set {v ∈ OT : n(v) ≤ λ3} is a subset of this sublattice so has rank 2, which
contradicts the definition of λ3.

We may then prove the proposition.

Proof of Proposition 3. Clearly isomorphic orders have the same successive min-
ima, and successive minima of their Gross lattices. If O ∼= O1728 we are imme-
diately done as the result holds for O1728. Instead suppose O ̸∼= O1728. Invoke
Lemma 25 to find an isomorphic order O′, then apply Lemma 27 to O′, giving
a basis in the required form, then apply Lemma 28 to show the third successive
minima of the Gross lattice of O′ is p.
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Appendix A Properties of Fp group action

We now prove some facts regarding the class group action used in Section 7.

Lemma 29. Let O be an order in an imaginary quadratic field K, and let I be
an O-ideal with N(I) coprime to f = cond(O). Suppose no scalar factors divide
I, i.e. (q) ∤ I for all primes q. Then there exists infinitely many equivalent ideals
J ∼ I of prime norm.

Proof. If I is the unit ideal we are done, so assume I ̸= (1). Let N = N(I) and
write I = ZN +Zα with N | n(α). The norm form of I with respect to this basis
is,

g : (x, y) 7→ n(xN + yα)

N
= Nx2 + t(α)xy +

n(α)

N
y2

which has integral coefficients. The form is positive definite as the field norm n on
K is positive definite. The form is primitive as otherwise N | t(α) and N2 | n(α)
which implies α

N ∈ OK is a quadratic integer. This implies f
N α ∈ f · OK ⊆ O

and multiplying by f−1 ∈ Z such that f−1f ≡ 1 mod N gives α
N ∈ O, which

is a contradiction as I has no scalar factors. By [8, Chapter 2.9C], g represents
infinitely many primes, so there are infinitely many β = xN + yα with x, y ∈ Z
such that n(β) = Nq for q prime. Moreover if N ̸= q then N ∤ y, so there are
infinitely many β with N ∤ y. Clearly for I ′ = ZN + Nβ we have I = I ′, as
I ′ ⊆ I follows from β ∈ I, and I ⊆ I ′ follows from Nα ∈ I ′ as I ′ is an ideal, and

yα = β − xN ∈ I ′, so α = gcd(N, y)α ∈ I ′. Setting J = I ′ βN = Zβ +Zq we have
I ∼ J and N(J) = q.
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Take a prime p ≥ 5 with p ≡ 3 mod 4 and define O = Z[g] with g =
1+

√
−p

2 . The class group action from [6] of the order O is defined as follows. Let
SSO be the isomorphism classes of supersingular elliptic curves E over Fp with
EndFp

(E) ∼= O. Fix isomorphism Φ : O → EndFp
(E). Take [a] ∈ Cl(O) and

assume a has factors of p removed, where p is the ideal above p in O. Let φ be
the separable isogeny from E with kernel

⋂
x∈a ker(Φ(x)). Note for any Z-basis

x1, ..., xn of a this kernel is equal to
⋂

i ker(Φ(xi)). Let E/a denote the codomain
of φ. Then the map ∗ : SSO × Cl(O) defined by E ∗ a = E/a is well-defined
and is a group action. Furthermore when a contains no scalar factors we have
deg(φ) = N(a).

Lemma 30. Following from above, fix a maximal quaternion order O ∼= End(E),
elements i, j, k as the usual basis of Bp,∞, and an isomorphism λ : O → End(E)
taking

√
−p to j. Suppose a has no scalar factors and norm coprime to p. Then

writing a = ⟨N(a), x⟩Z for some x ∈ O,

I = O ·N(a) +O · λ−1(Φ(x)),

is a left quaternion O-ideal which corresponds to φ under the Deuring corre-
spondence. This means N(I) = N(a), End(E/a) ∼= Oright(I), and we have
λ−1(Φ(g)) ∈ Oright(I).

Proof. By Deuring correspondence, the O-ideal J corresponding to φ is,

J = λ−1({θ ∈ End(E) : ker(φ) ⊆ ker(θ)}).

Given I = O · N(a) + O · λ−1(Φ(x)), our aim is to show I = J . From the
definition of φ we have ker(φ) = ker([N(a)])∩ker(Φ(x)), so ker(φ) ⊆ ker([N(a)])
and ker(φ) ⊆ ker(Φ(x)). By pre-composing these maps by an endomorphism
θ ∈ O, we only make the kernel larger, hence ker(φ) ⊆ ker(λ(θ) ◦ [N(a)]) and
ker(φ) ⊆ ker(λ(θ) ◦ Φ(x)). This shows θ · N(a) ∈ J and θ · λ−1(Φ(x)) ∈ J .
Since θ was arbitrary, O ·N(a) ⊆ J and O ·λ−1(Φ(x)) ⊆ J . As J is closed under
addition I ⊆ J . It is then sufficient to show N(I) = N(J), or more precisely that
N(I) ≤ N(J). From the Deuring correspondence N(J) = deg(φ), and from the
group action deg(φ) = N(a), so N(J) = N(a). As a contains no scalar factors,
I is cyclic. It is a well known fact that for cyclic quaternion ideals I we have
I ∩ Z = N(I) · Z. Then as N(a) ∈ I, we have N(I) ≤ N(a).

Finally, to show λ−1(Φ(g)) ∈ Oright(I), by definition of right order one must
show O · N(a)λ−1(Φ(g)) + O · λ−1(Φ(x))λ−1(Φ(g)) ⊂ I. This is trivial from
linearity of λ−1 and Φ, commutativity of multiplication in O, and the closure of
O.
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