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ABSTRACT
Privacy and security have become critical priorities in many sce-
narios. Privacy-preserving computation (PPC) is a powerful solu-
tion that allows functions to be computed directly on encrypted
data. Garbled circuit (GC) is a key PPC technology that enables
secure, confidential computing. GC comes in two forms: Boolean
GC supports all operations by expressing functions as logic circuits;
arithmetic GC is a newer technique to efficiently compute a set of
arithmetic operations like addition and multiplication. Mixed GC
combines both Boolean and arithmetic GC, in an attempt to opti-
mize performance by computing each function in its most natural
form. However, this introduces additional costly conversions be-
tween the two forms. It remains unclear if and when the efficiency
gains of arithmetic GC outweigh these conversion costs.

In this paper, we present Arithmetic Boolean Logic Exchange
for Garbled Circuit, the first real implementation of mixed GC.
ABLE profiles the performance of Boolean and arithmetic GC oper-
ations along with their conversions. We assess not only communi-
cation but also computation latency, a crucial factor in evaluating
the end-to-end runtime of GC. Based on these insights, we propose
a method to determine whether it is more efficient to use general
Boolean GC or mixed GC for a given application. Rather than im-
plementing both approaches to identify the better solution for each
unique case, our method enables users to select the most suitable
GC realization early in the design process. This method evaluates
whether the benefits of transitioning operations from Boolean to
arithmetic GC offset the associated conversion costs. We apply this
approach to a neural network task as a case study.

Implementing ABLE reveals opportunities for further GC opti-
mization. We propose a heuristic to reduce the number of primes
in arithmetic GC, cutting communication by 14.1% and compute
latency by 15.7% in a 16-bit system. Additionally, we optimize mixed
GC conversions with row reduction technique, achieving a 48.6%
reduction in garbled table size for bit-decomposition and a 50%
reduction for bit-composition operation. These improvements re-
duce communication overhead in stream GC and free up storage in
the GC with preprocessing approach. We open source our code for
community use.

KEYWORDS
privacy-preserving computation, secure multi-party computation,
cryptography

1 INTRODUCTION
With the rapid growth of cloud computing and data-driven ser-
vices, the handling of sensitive data has become a critical concern.
As more businesses and individuals rely on cloud-based platforms

for processing and storing their private information, the need for
robust data protection techniques has intensified. This demand
has spurred the development of privacy-preserving computation
(PPC), a set of technologies that ensure both confidentiality and
control over sensitive data during computation. PPC, including
secure multi-party computation (MPC), allows parties to perform
computations on encrypted data without exposing their private
inputs. This is particularly valuable in scenarios where data confi-
dentiality is paramount, such as in financial transactions, healthcare
analytics, and secure machine learning. PPC technologies not only
protect data from third-party interception during transmission, but
also keep it encrypted throughout the entire computation process,
safeguarding privacy and security even from the service provider.

One of the most widely adopted PPC techniques is Yao’s garbled
circuit (GC) protocol [75, 76]. This protocol enables two parties, the
garbler and the evaluator, to jointly evaluate a function while keep-
ing their inputs private. Since its introduction, GC has become a
fundamental tool in cryptography and has been applied to a variety
of secure computation applications, including secure machine learn-
ing [52, 56, 71], private inference [28, 31, 39, 49], and blockchain
technologies [32]. For instance, in a cloud-based machine machine
learning service, GC can be used to ensure that a user’s private
data remains confidential during image inference. This allows the
service provider to generate results without accessing the raw data.
Similarly, in the context of Ethereum, GC can securely evaluate
operations such as those containing logical conditions like IF, OR,
or EQUALS, without revealing sensitive transaction data to the par-
ticipants, thereby maintaining privacy while ensuring the integrity
of operations like balance changes. The key advantage of GC com-
pared to other PPC techniques like homomorphic encryption and
additive secret sharing is that GC is general, enabling computation
on any arbitrary function, and GC has fixed-round communication.

GC was initially implemented using Boolean logic. Much like
traditional logic synthesis, a function is first translated into a com-
binational logic circuit before being securely computed. In this
approach, both the binary bits of the function’s inputs and the
logic gates are processed in an encrypted form. At the protocol
level, one party (the garbler) prepares the encrypted inputs and the
garbled circuit, then sends them to the other party (the evaluator).
The evaluator performs evaluation on the garbled circuit using the
encrypted inputs to produce the results. Extensive research has
focused on improving the efficiency of Boolean GC, particularly in
reducing communication complexity and encryption overhead. This
is crucial because the total cost of GC can become prohibitively high
for circuits with large input bit lengths and complex operations. Nu-
merous prior works [12, 41, 43, 58, 64, 67, 78] have been developed
to optimize GC construction. For example, the Row Reduction [58]
technique reduces the communication required for transmitting the
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Figure 1: Different GC realizations for a function: traditional
Boolean GC on the left, mixed GC on the right. Blue repre-
sents operands / operations in arithmetic. Since square root
is not supported by arithmetic GC, a BD gate is required to
convert it to Boolean.

garbled circuit, while FreeXOR [43] and HalfGate [78] techniques
eliminate the communication cost for XOR gates and halve the cost
for AND gates, respectively. Furthermore, low-cost and hardware
accelerations [26, 34, 35, 54, 74] have made GC over 500× faster
compared to software implementations on CPU.

Although improvements of Boolean GC exist, the total cost re-
mains relatively high due to its tight binding with Boolean circuits.
For instance, garbling a Boolean 32-bit multiplication circuit can
require up to 2.8k gates. These gates cannot be reused due to se-
curity constraints, causing the total complexity of the circuit to
grow linearly with an increasing number of operations. On the
other hand, Applebaum et al. [4] introduced arithmetic GC, and
Ball et al. [9] further provided an efficient approach to arithmetic
GC. Unlike Boolean GC, where inputs are processed bit by bit and
operations are performed at the gate level, arithmetic GC processes
inputs as numbers over a ring R, allowing for arithmetic operations
on inputs 𝑥 ∈ R. The advantages of arithmetic GC are substantial.
For example, multiplication, which requires many individual gates
in Boolean GC, can be handled as a single, straightforward multi-
plication procedure in arithmetic GC. The construction developed
in [7, 9] improves arithmetic GC with free addition / subtraction,
free multiplication by a public constant, and low-cost general ci-
phertext multiplication and exponentiation by a public constant.
Similar to FreeXOR, free here means that the operation requires no
communication or encryption during evaluation.

Despite these advantages, many PPC frameworks [5, 22, 40, 48,
63, 72, 77] still rely on Boolean GC because it is more general with
broader applicability, whereas arithmetic GC is restricted to specific
arithmetic operations. Accurately computing arbitrary functions
with only arithmetic GC – including addition, multiplication, and
exponentiation – remains challenging, particularly for non-linear
operations like comparison, conditional logic, and ReLU activation,
which generally require “bit-wise” processes. Therefore, a standard
approach is to combine both Boolean and arithmetic GC, leveraging
the generality of Boolean GC while exploiting the efficiencies of
arithmetic GC for specific tasks. This combination necessitates
constructing conversion mechanisms to switch between arithmetic
and Boolean GC.

Arithmetic GC encodes values over a large ring R using the
Residue Number System (RNS) [62]. Naively garbling a conversion
circuit for RNS arithmetic and Boolean GC – specifically, garbling
a Chinese Remainder Theorem (CRT) function to recover values

from RNS encoding – can lead to exponentially large and ineffi-
cient circuits. Recently, Li et al. [47] proposed an efficient method
for managing these conversions. This approach includes efficient
bit-composition (BC) and bit-decomposition (BD) gates that facili-
tate seamless conversion between Boolean and arithmetic within a
circuit. It enables the construction of mixed GC, which integrates
both Boolean and arithmetic operations and values within a single
circuit.

For practical mixed GC, it is crucial that the benefits of using
arithmetic GC for certain operations outweigh the costs of conver-
sion. Figure 1 demonstrates a general function that includes both
multiplication and square root operations. While arithmetic GC can
efficiently handle multiplication, the square root operation has to be
computed using Boolean GC. The challenge is, it will be unclear to
GC users to determine whether the efficiency gains from arithmetic
multiplication are sufficient to offset the additional costs of BD
gates required for conversion. Although arithmetic multiplication
is generally more efficient than its Boolean counterpart, if the cost
of BD gates is significantly higher, the overall cost could exceed
the original Boolean approach. Our goal is to eliminate the need to
garble both Boolean and mixed approaches for comparison at each
time, and ensure that users select the most suitable, cost-effective
GC realization for their tasks.

Some PPC frameworks [22, 40, 68] combine Boolean and arith-
metic computation with different protocols, such as Additive Secret
Sharing or Homomorphic Encryption. However, switching between
protocols introduces additional costs, including the need for extra
authentication during transitions, increased communication rounds,
or potential exposure to plaintext. These conversion techniques are
generally interactive, whereas mixed GC remains entirely within
the (non-interactive) GC paradigm. The intent of this paper is not
to argue whether switching protocols is superior, but rather to
demonstrate how to determine an efficient GC realization for a
given workload, thereby enhancing the performance of applica-
tions involving the GC protocol.

1.1 Contributions
In this paper, we implement and optimize the mixed GC and its
practical BC/BD methods. First, we improve prime selection for
arithmetic GC. The RNS of arithmetic GC consists of a series of
primorial modulus mod-𝑝 arithmetic circuits. By heuristically re-
moving certain primes, we maintain a sufficiently large range for
arithmetic numbers while reducing unnecessary primes, thus de-
creasing communication overhead and runtime. Next, we refine
the order and key generation procedure using the row reduction
technique in BD and BC to minimize ciphertext communication.
These optimizations result in more efficient implementations of
arithmetic GC and GC conversion. By evaluating the conversion
cost in different GC conditions, including stream GC and GC with
preprocessing, we provide a clear and intuitive method for users to
determine the efficient GC realization for their application early in
the design phase. Our work can be summarized as follows:

(1) Comprehensive characterization of mixed GC. We present
the first end-to-end analysis of mixed GC, evaluating var-
ious operations with respect to their garbled table costs,
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garbling and evaluation latency. This analysis spans differ-
ent GC approaches, including stream and preprocessing
GC, and different bit-widths.

(2) Decision tools for GC realization. We introduce the BC
and BD equivalent ratios to help GC users determine the
most performant GC configuration (either pure Boolean
or mixed) for their specific applications at an early stage,
before committing to the garbling process.

(3) Optimized prime selection for arithmetic GC. We propose a
new method for selecting a minimal set of primes in arith-
metic GC, reducing the overall prime sum by an average of
5.3%. We list the optimized primes for different bit-widths,
allowing users to apply them directly in future work with-
out the need for further re-compute.

(4) Reducing communication overhead in GC conversions. We
introduce significant optimizations for the conversion be-
tween Boolean and arithmetic GC, achieving a 50% reduc-
tion in garbled table size for BC gates and a 48.6% reduction
for BD gates, on average.

In Section 3 we detail our optimizations for arithmetic GC and
mixed GC conversions. Section 4 and 5 characterize the perfor-
mance improvements from these optimizations and discuss the
trade-offs between different GC realizations and approaches. To
provide a practical perspective, we apply our findings to a case
study involving a specific machine learning model in Section 6. We
conclude our discussion in Section 8. Our code is publicly available
at this repository 1.

2 PRELIMINARIES
This section provides a brief primer on GC, aiming to equip the
reader with sufficient background to understand our contributions.
For a complete review, we refer those interested to related ma-
terial [15, 73]. We denote sets using 𝑖 ∈ [𝑘] to represent 𝑖 ∈
{0, 1, . . . , 𝑘−1}. Z denotes integers, and Z𝑚 denotes the ring of inte-
gers modulo natural number𝑚, that is, {0, 1, . . . ,𝑚−1}. Logarithms
are base 2.

2.1 Boolean Garbled Circuit
We adhere to the garbling schemes abstraction and security defini-
tions outlined in [9, 47]. Briefly, semi-honest GC is a type of PPC
with twomain phases: garbling and evaluation. It allows two parties,
Alice (garbler) and Bob (evaluator), to jointly compute 𝑦 = 𝑓 (𝑎, 𝑏)
on secret inputs: 𝑎 from Alice and 𝑏 from Bob. During the garbling
phase, the garbler transforms a circuit 𝑓 into its garbled version 𝐹 ,
and defines encoding and decoding schemes to convert between
plaintext and garbled values. The evaluation phase uses the garbled
circuit and garbled inputs to generate garbled outputs, which can
then be decoded to obtain the plaintext result.

Classic Boolean GC [15] represents functions using combina-
tional logic circuits and binary values as inputs. Each operator
is referred to as a gate (typically AND and XOR), and the binary
operands are called wires (gate inputs and outputs). For each wire,
the garbler selects two random wire labels𝑊 0 and𝑊 1, where each
𝑊 𝑥 is a 𝜆-bit binary string encoding the truth value 𝑥 . Here, 𝜆 de-
notes the security parameter (in the paper we implement 𝜆 = 128).
1https://github.com/jianqiaomo/mixed_boolean_arith_garble

The table is shuffled before being sent to the evaluator. For a typi-
cal fan-in-2 gate, the garbler generates a garbled table consisting
of four rows of ciphertext as the gate’s property. Similar to the
gate’s truth table, suppose the gate has input wires 𝐴 (held by the
garbler) and 𝐵 (held by the evaluator), an output wire 𝐶 , and gate
functionality 𝑓 : {0, 1}2 → {0, 1}. Each row of the garbled table is
Tab = E

𝑊 𝑎
𝐴
,𝑊 𝑏

𝐵
(𝑊 𝑓 (𝑎,𝑏 )

𝐶
) for 𝑎 ∈ {0, 1} and 𝑏 ∈ {0, 1}. Here E𝑘 (𝑚)

denotes an encryption scheme, meaning the input wire labels are
used as keys to encrypt the output wire label. The garbler sends
the garbled table Tab and the label𝑊 𝑎

𝐴
representing her input to

the evaluator. The evaluator obtains his label𝑊 𝑏
𝐵
corresponding

to his value 𝑏 via oblivious transfer [11, 37, 79]. At the evaluator
side, since he holds one wire label per wire, he can decrypt only
one ciphertext per gate from Tab and learn one label for the output
wire. This output label can be used as an input for subsequent gates,
or decrypted as a plaintext result.

Many optimizations have been proposed since the classic Boolean
GC scheme. Point-and-permute [12] allows the evaluator to de-
crypt only one ciphertext instead of attempting to decrypt all four.
In this technique, a random “color bit” 𝑝0 and 𝑝1 = 𝑝0 ⊕ 1 are
appended to the end of each wire label, ensuring that𝑊 0 and𝑊 1

have opposite color bits. The color bit 𝑝𝑏 does not reveal any infor-
mation about the truth value 𝑏. The garbler arranges the ciphertexts
in the garbled table according to the color bits of the input wire
labels. For instance, if𝑊 0

𝐴
has color 1 and𝑊 0

𝐵
has color 0, then the

ciphertext encrypting from input labels𝑊 0
𝐴
and𝑊 0

𝐵
is placed in the

third row (binary 0b10) of the garbled table. This way, the evaluator
only needs to decrypt one ciphertext, indicated by the color bits of
the input wire labels.

Row reduction [58] eliminates one ciphertext from the garbled
table. Instead of choosing the output wire labels𝑊 0

𝐶
and𝑊 1

𝐶
at

random, the garbler selects one label such that the first ciphertext
of garbled table is always an all-zero string. For example, if the first
ciphertext is E𝑊 0

𝐴
,𝑊 1

𝐵
(𝑊 0

𝐶
), then setting𝑊 0

𝐶
= E−1

𝑊 0
𝐴
,𝑊 1

𝐵

(0𝜆) makes

the first ciphertext to be zero, where E−1 is the decryption of E and
0𝜆 is a 𝜆-bit zero string. Consequently, only the remaining three
rows of the garbled table need to be communicated.

FreeXOR [43] enables XOR gate computation in GC without
garbled table. It fixes the relationship between labels𝑊 0 and𝑊 1.
The garbler randomly selects a global label Δ ∈ {0, 1}𝜆 , and𝑊 0

for a wire. Then,𝑊 1 is set to𝑊 1 =𝑊 0 ⊕ Δ. The global label Δ is
consistent across the entire circuit, meaning anywire label encoding
𝑥 ∈ {0, 1} can be expressed as𝑊 𝑥 = 𝑊 0 ⊕ 𝑥Δ. This allows the
evaluator to compute the XOR of two wire labels directly (without
using garbled table or any encryption), obtaining the correct garbled
XOR result (𝑊 𝑎

𝐴
⊕𝑊 𝑏

𝐵
) = (𝑊 0

𝐴
⊕𝑊 0

𝐵
) ⊕ (𝑎 ⊕ 𝑏)Δ, by setting𝑊 0

𝐶
=

𝑊 0
𝐴
⊕𝑊 0

𝐵
as the output label at 0. Naturally,𝑊 1

𝐶
=𝑊 0

𝐴
⊕𝑊 0

𝐵
⊕ Δ =

𝑊 0
𝐶
⊕ Δ. To be compatible with point-and-permute, the color bit

can be appended to the wire label and the global label. By setting
the last bit of Δ to 1, every pair of wire labels𝑊 0 and𝑊 1 will have
opposite color bits.

HalfGate [78] is a technique that requires only two ciphertexts
per garbled AND gate and is compatible with FreeXOR. These make
the implementation of AND, XOR, and NOT gates (i.e., XORing 1)
efficient, achieving functional completeness in GC. A logic circuit
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with HalfGate and FreeXOR achieves low ciphertexts and encryp-
tion needs.

2.2 Arithmetic Garbled Circuit
Arithmetic GC was introduced in [4] as a natural extension of
Boolean GC, where the logic circuit is generalized to an arithmetic
circuit. Instead of representing binary truth values {0, 1}, the wire
labels in arithmetic GC encode values 𝑥 ∈ Z𝑚 . Advancements
within this framework were made in [7, 9], extending FreeXOR
from modulus 2 to modulus 𝑝 , thereby enabling free garbling of ad-
dition gates. The HalfGate technique was generalized to efficiently
support multiplication gates. These specific improvements are im-
plemented in [27]. Although there are other promising develop-
ments in arithmetic GC [8, 33], they are either not yet implemented
or incompatible with mixed GC, which limits their applicability to
our goal of developing a practical mixed GC.

In arithmetic GC, a wire label encoding 𝑥 ∈ Z𝑝 is denoted by
𝑊 𝑥 ∈ Z𝑙𝑝 , where 𝑝 is a prime number, and𝑊 𝑥 is a vector with
elements in Z𝑝 , and length 𝑙 . For different modulus 𝑝 , a unique
global label Δ𝑝 ∈ Z𝑙𝑝 is sampled at random. Similar to FreeXOR, the
wire label is defined as𝑊 𝑥 =𝑊 0 + 𝑥Δ𝑝 , where the addition and
multiplication is performed element-wise in modulo 𝑝 . The point-
and-permute technique is also generalized in this context: instead
of appending a binary color bit, a color “number” (an element of Z𝑝 )
is appended to each wire label, with 1 ∈ Z𝑝 appended to Δ𝑝 . Let
𝛼𝑥 denote the color number of𝑊 𝑥 ; we have 𝛼𝑥 = 𝛼0 + 𝑥 , meaning
the possible color for a wire are cyclically shifted from a random
value 𝛼0, the color of𝑊 0. Importantly, observing the color of any
wire label𝑊 𝑥 reveals nothing about its encoded value 𝑥 . The label
length 𝑙 is determined by the security parameter 𝜆, specifically
𝑙 = ⌈𝜆/log𝑝⌉, ensuring that each wire label is at least 𝜆 bits long.
Given that AES-128 is commonly used to implement GC, the color
number is typically integrated into the label itself (not externally
appended), making the total length 𝑙 . If 𝑝 is not prime and can be
factored into smaller primes, the label length should be ⌈𝜆/log 𝑝0⌉,
where 𝑝0 is the smallest prime factor. In practice, to be compatible
with the residue number system, which will be discussed later, we
consider only prime moduli in this section.

Arithmetic GC supports a variety of fundamental operations.
Free addition allows for addition modulo 𝑝 without requiring a
garbled table, as𝑊 𝑥

𝐴
+𝑊 𝑦

𝐵
= (𝑊 0

𝐴
+𝑊 0

𝐵
) + (𝑥 +𝑦)Δ𝑝 (mod 𝑝). Free

public multiplication enables multiplication by a public constant
𝑐 modulo 𝑝 without a garbled table. General multiplication over
secret values is supported through the generalized HalfGate, with
the cost of garbled table 𝑞 + 𝑝 − 1 ciphertexts for multiplying two
wire labels with 𝑥 ∈ Z𝑝 and 𝑦 ∈ Z𝑞 . Additionally, the projection
gate allows for conversion from a wire modulo 𝑝 to a wire modulo
𝑞, applying an arbitrary function 𝜙 : Z𝑝 → Z𝑞 , with a garbling cost
of 𝑝 − 1 ciphertexts. This projection gate is useful for converting
between Boolean (mod-2) labels and arithmetic label in mod-𝑝 .

Using a wire label in mod-𝑝 to represent 𝑥 ∈ Z𝑝 becomes in-
efficient and impractical when 𝑥 is large, as the cost of the gar-
bled table scales linearly with 𝑝 . To address this, [9] introduced
the Residue Number System (RNS) [62], which represents values
over a composite primorial modulus 𝑁 = 2 · 3 · · · 𝑝𝑘 using the
first 𝑘 primes. This approach encodes a large value 𝑥 ∈ Z𝑁 as

(⟦𝑥⟧2, ⟦𝑥⟧3, . . . ⟦𝑥⟧𝑝𝑘 ), where ⟦𝑥⟧𝑝𝑖 is the remainder of 𝑥 mod 𝑝𝑖 .
Consequently, in arithmetic GC, a value 𝑥 is represented by a bundle
of wire labels corresponding to moduli {2, 3, . . . 𝑝𝑘 }. For example, a
bundle of wire labels in moduli {2, 3, 5, 7, 11} is used to represent
an 8-bit value 𝑥 ∈ Z28 . By the Chinese Remainder Theorem (CRT),
each 𝑥 ∈ Z𝑁 has a unique, corresponding RNS encoding. Addition,
multiplication and exponentiation are allowed in RNS, which are
simply performed component-wise. For example, to add 𝑥 and 𝑦,
we can simply add their residues ⟦𝑧⟧𝑝𝑖 = ⟦𝑥⟧𝑝𝑖 + ⟦𝑦⟧𝑝𝑖 (mod 𝑝𝑖 )
for each 𝑝𝑖 in RNS encoding.

In summary, arithmetic GC supports operations including ad-
dition, multiplication, and exponentiation with a public exponent,
which offer significant advantages over Boolean GC. However, arith-
metic GC with RNS becomes less general, missing efficient bit-wise
operationswhich are fundamental tomodern computer architecture.
This limitation poses challenges for securely computing operations
like comparison, division, and floating-point. While the primorial
mixed-radix (PMR) system in [7] helps build comparison gate and
ReLU functions in arithmetic GC, converting from RNS to PMR
involves non-prime moduli which have longer label length and are
not implemented. In this paper we rather focus on a more general
problem of implementing the conversion between RNS arithmetic
and Boolean.

2.3 Mixed Boolean and arithmetic GC
Mixed circuits integrate Boolean and arithmetic computations by
combining Boolean wire bundles with RNS arithmetic wire bun-
dles. The foundation of these circuits includes standard Boolean
gates, arithmetic operations, and specialized gates for conversion be-
tween Boolean and RNS arithmetic. Specifically, these conversions
are achieved through bit-decomposition (BD) and bit-composition
(BC) gates. In fact, the BC gate, which converts Boolean wire la-
bels to RNS arithmetic, can be constructed using existing tools.
To convert a binary value of 𝑏 bits into RNS arithmetic, the fol-
lowing transformation is applied: ⟦𝑥⟧𝑝 𝑗

=
∑𝑏−1
𝑖=0 2𝑖𝑥𝑖 (mod 𝑝 𝑗 ),

where 𝑝 𝑗 ∈ {2, 3, · · · 𝑝𝑘 } and 𝑥𝑖 represents the 𝑖-th bit. This can be
achieved by leveraging the projection gate and free addition in each
modulus 𝑝 𝑗 . However, simply decomposing each RNS digit into
Boolean using the projection gate does not yield a correct Boolean
encoding of the original value.

To efficiently convert RNS arithmetic to Boolean, a mod-𝑝𝑘 arith-
metic wire label is introduced in [47], where 𝑝 is a prime and 𝑘 is
a natural number, along with BD/BC gates for the mod-𝑝𝑘 label.
The mod-𝑝𝑘 wire label is similar to general arithmetic wire label
in mod-𝑝: it is a vector of Z𝑝𝑘 -elements; it represents 𝑥 ∈ Z𝑝𝑘 in
the form of𝑊 𝑥 =𝑊 0 + 𝑥Δ𝑝𝑘 , with an appended color number for
point-and-permute. A key difference is that the length of mod-𝑝𝑘
label 𝑙 = ⌈𝜆/log𝑝⌉. Then, since each Z𝑝𝑘 element is 𝑘 ⌈log𝑝⌉-bit,
the label is at least 𝑘𝜆-bit in total, making it 𝑘 times longer than
the general arithmetic label in mod-𝑝 .

This extended mod-𝑝𝑘 wire label also supports free addition and
free multiplication with a public constant. In [47], it provides a
BC gate that merges 𝑏 Boolean labels to a mod-𝑝𝑘 label, and a BD
gate that converts a mod-𝑝𝑘 label to 𝑘 Boolean labels. The primary
advantage of the mod-𝑝𝑘 wire label lies in its capacity to represent

4



Algorithm 1 Improve primes selection for arithmetic GC
Input: Bit-width requirement 𝑏, initial 𝑘 primes set {2, 3 . . . 𝑝𝑘 }
Output: Optimized primes set {𝑝1 . . . 𝑝𝑚}
1: function PrimeSelect
2: 𝑑 ← 2·3...𝑝𝑘

2𝑏
3: if 𝑑 < 2 then
4: return {2, 3 . . . 𝑝𝑘 }
5: else
6: 𝑛← max

{
𝑗 | ∏𝑗

𝑖=1 𝑝𝑖 ≤ 𝑑

}
7: 𝑒𝑥𝑐𝑙 ← {2, 3, . . . 𝑝𝑛}
8: 𝑝𝑑 ← max

{
𝑝𝑖 | 𝑝𝑖 ∈ {2, 3 . . . 𝑝𝑘 } and 𝑝𝑖 ≤ 𝑑

}
9: for 𝑙 ← 1 to 𝑛 − 1 do
10: for {𝑝𝑖 }𝑙 ← GetCombination(𝑙 , {2, 3 . . . 𝑝𝑑 }) do
11: if

∑ {𝑝𝑖 }𝑙 > ∑
𝑒𝑥𝑐𝑙 and

∏ {𝑝𝑖 }𝑙 ≤ 𝑑 then
12: 𝑒𝑥𝑐𝑙 ← {𝑝𝑖 }𝑙
13: 𝑟𝑒𝑠𝑡 ← {2, 3 . . . 𝑝𝑘 } \ 𝑒𝑥𝑐𝑙
14: 𝑠 ← ∑

𝑟𝑒𝑠𝑡

15: if 𝑘 − 𝑛 > 2 then for𝑚 ← 𝑘 − 𝑛 − 1 to 1 do
16: if ( 𝑠𝑚 )

𝑚 < 2𝑏 then
17: return 𝑟𝑒𝑠𝑡

18: else
19: 𝑃 ← {2, 3, . . . , 𝑝𝑟 | 𝑝𝑟 ≤ 𝑠} ⊲ Primes that ≤ 𝑠

20: for {𝑝𝑖 }𝑚 ← GetCombination(𝑚, 𝑃 ) do
21: if

∑ {𝑝𝑖 }𝑚 < 𝑠 and
∏ {𝑝𝑖 }𝑚 ≥ 2𝑏 then

22: 𝑟𝑒𝑠𝑡 ← {𝑝𝑖 }𝑚
23: 𝑠 ← ∑

𝑟𝑒𝑠𝑡

24: return 𝑟𝑒𝑠𝑡

large Z𝑝𝑘 value, facilitating the reversion of an RNS encoding to
its original value. For an RNS system 𝑁 = 𝑝1𝑝2 · · · 𝑝𝑘 , where 𝑥 is
encoded as (⟦𝑥⟧𝑝1 , · · · ⟦𝑥⟧𝑝𝑘 ), there exist constants 𝑐1, · · · 𝑐𝑘 ∈ Z𝑁
that allow the recovery of 𝑥 via 𝑥 =

∑𝑘
𝑖=1 𝑐𝑖 · ⟦𝑥⟧𝑝𝑖 (mod 𝑁 ).

These constants can be precomputed using the CRT when the set
{𝑝1, 𝑝2 · · · 𝑝𝑘 } is determined. Thus, by merging RNS arithmetic
labels into a mod-𝑝𝑘 label using the BC gate, performing a modulo
𝑁 operation for the actual value, and then applying a BD gate, we
can successfully convert RNS arithmetic label bundle into Boolean
labels. The modulo 𝑁 operation for mod-𝑝𝑘 label is also realized by
BD gates, BC gates, free addition and multiplication in [47]. Figure 2
illustrates the key (non-free) steps in this conversion process.

3 OPTIMIZING MIXED GARBLED CIRCUIT
Classic Boolean GC is commonly deployed [14, 22, 40, 48, 72], while
arithmetic GC is realized in fancy-garbling [27]. We improve the bit-
composition (BC) and decomposition (BD) gates based on existing
work, employing a grab-and-go design to facilitate the integration
of mixed GC. Before incorporating the BC and BD gadgets, we
enhance the current implementation of arithmetic GC. Following
these enhancements, we design the concrete BC and BD gates, select
parameters based on real-world requirements, and reorganize the
algorithm to minimize actual communication using row reduction.

3.1 Prime Reduction in Arithmetic GC
Our starting point is to optimize the prime selection in arithmetic
GC. To garble arithmetic gates over large moduli, as done in [27],
they use the Chinese Remainder Theorem (CRT), also known as
Residue Number System (RNS) to break down computations over a
large ring into smaller primorial modulus rings. Details are provided
in Section 2. Given a bit-width 𝑏, the standard approach is to select
the first 𝑘 primes and construct over ring Z𝑁 where 𝑁 = 2 · 3 . . . 𝑝𝑘
so that Z𝑁 can fit 𝑏 bits (i.e., 𝑁 ≥ 2𝑏 ). While it is intuitive to
select the first 𝑘 primes because they are small yet their product
exceeds 2𝑏 , the communication and computation costs in RNS-based
arithmetic GC depends on the sum of the primes. Therefore, our
optimization is to find a set of primes whose product is sufficiently
large to fit the given bit-width 𝑏, while minimizing their sum.
Selecting small individual primes does not necessarily yield the
smallest final sum. Although there is research on prime selection
in RNS, it does not account for the cost in GC, instead they prefer
fewer or closer primes [62].

Finding a mathematical method to identify the smallest prime
sum with the product large enough to meet requirements is chal-
lenging. A naive approach involves going through all possible prime
combinations and filtering those that meet the requirements. How-
ever, this approach is expensive due to the vast number of potential
combinations and the broad range of numbers to consider with-
out additional constraints. For example, if we need three primes
to represent a range of 28, there would be over 24,000 potential
combination possibilities to randomly choose three primes. To ad-
dress this, we introduce a new heuristic method to select the fewer
RNS primes to optimize arithmetic GC latency. Instead of randomly
choosing primes, we adopt an incremental approach that eliminates
unnecessary primes, significantly reducing the number of possible
traversals.

Our approach consists of two steps. We start by removing un-
necessary primes from the initial set of the first 𝑘 continues primes
generated by the original method. Then, we demonstrate that no
other prime set can perform better than the resulting primes. To
remove unnecessary primes, we calculate how far the product of
the 𝑘 primes exceed the target 2𝑏 by dividing them. The division
𝑑 =

2·3...𝑝𝑘
2𝑏 indicates the largest prime that can be removed. If 𝑑 is

less than 2, no primes can be removed. With 𝑑 calculated, we find
the longest removable prime set by maximizing the length 𝑛 such
that the product of the first 𝑛 primes 2 · 3 . . . 𝑝𝑛 ≤ 𝑑 . In other words,
we can remove at least one and up to 𝑛 primes. We then go through
the combination of primes not greater than 𝑑 , with a fixed combina-
tion length 𝑙 < 𝑛. Note that for 264, the original prime set contains
just 16 primes, and the primes that no greater than 𝑑 are even fewer,
making it feasible to evaluate all combinations quickly. This allows
us to identify all removable prime combinations. By removing the
combinations with the largest sum, we get the remaining primes
that meet the 2𝑏 requirement while having a smaller sum. The sum
of remaining primes is minimal as replacing any of them with a
smaller one would fail to meet the 2𝑏 requirement, and replacing
any with a larger one would increase the sum.

For example, to represent 216, the initial set is {2, 3, 5, 7, 11,
13, 17}, with a product of 510,510 which is 7.79× than 216. The
longest combination we can remove is {2, 3}, leaving {5, 7, 11, 13,
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Figure 2: The overall conversions flow. Some miscellaneous
operations such as free addition are omitted. The path on
the upper shows the BD path to convert RNS arithmetic to
Boolean, while the lower part shows the BC from Boolean to
RNS arithmetic.

17}. Alternatively, we can remove {7}, then we have {2, 3, 5, 11, 13,
17}. We prefer the latter set due to its smaller sum.

After finding the smallest sum 𝑠 and the resulting prime set, we
take an additional step to ensure that no prime combinations with
lengths lower than 𝑘−𝑛 canmeet the 2𝑏 requirement while having a
smaller sum. Suppose there exists a better combination with length
𝑚 < 𝑘 − 𝑛 that has lower sum

∑𝑚
𝑖=1 𝑞𝑖 < 𝑠 . These𝑚 primes are not

necessary the first𝑚 primes. According to the AM–GM inequality
we have

∏𝑚
𝑖=1 𝑞𝑖 ≤ (

∑𝑚
𝑖=1 𝑞𝑖
𝑚 )𝑚 < ( 𝑠𝑚 )

𝑚 . Note that for𝑚 < 𝑘 − 𝑛,
the expression ( 𝑠𝑚 )

𝑚 is monotonically increasing2 with𝑚. Thus if
the upper bound of product

∏𝑚
𝑖=1 𝑞𝑖 , which is (

𝑠
𝑚 )

𝑚 at𝑚 = 𝑘−𝑛−1,
is smaller than 2𝑏 , we can conclude that such combination with
shorter length and smaller sum assumption cannot fit 2𝑏 . Detailed
steps are shown in Algorithm 1.

This targeted approach allows us to efficiently find an optimal
set of primes. The key idea is to narrow the range of potential
combinations, and skip generating those unnecessary combinations
to speed up the finding. The selection of primes can be applied to
all future arithmetic GC implementations. We show the primes in
Appendix Table 7. The original method using the first 𝑘 primes has
6.9× exceeding the necessary range on average, while the optimized
primes are only 1.2× exceeding. For the primes that are optimized,
their sum is 5.3% less than the original primes on average.

3.2 Optimize Mixed GC Conversion
Practical real-world mixed GC involves conversions between RNS-
based arithmetic GC and Boolean GC. When converting labels from
Boolean to RNS arithmetic, the Boolean labels are composed into
each prime modulus of the RNS (see Section 2.3). The conversion
from RNS-arithmetic to Boolean is more complex, requiring a longer
mod-𝑝𝑘 arithmetic label as intermediate variables. To streamline
the process, we choose 𝑝 = 2, eliminating the need for an additional
conversion frommod-𝑝 tomod-2. Thus, themod-𝑝𝑘 arithmetic label
is reduced to a mod-2𝑘 arithmetic label. The core idea behind the
conversion is to merge all RNS remainders using a linear function,
similar to the CRT inversion. The result, being large, requires a
mod-2𝑘 arithmetic label to fit. We then compute modulo𝑁 to obtain

2For 𝑘 − 𝑛 > 2, the 𝑠/𝑒 =
∑
𝑟𝑒𝑠𝑡 𝑝𝑖

𝑒
>
(𝑘−𝑛)𝑒

𝑒
> 𝑘 − 𝑛 because 𝑠 comes from at least

(𝑘 − 𝑛) primes. That is,𝑚 < 𝑘 − 𝑛 < 𝑠/𝑒 . The expression ( 𝑠
𝑚
)𝑚 is monotonically

increasing when𝑚 < 𝑠/𝑒 .

Table 1: The number of garbled table rows (each representing
𝜆 bits) required for 4 to 64-bit RNS arithmetic and Boolean
BD/BC conversions. The improvement column shows the
reduction in communication overhead achieved through op-
timization.

Z BD Opt. BD Imp. BC Opt. BC Imp.
24 539 275 48.98% 16 8 50.00%
28 1827 937 48.71% 48 24 50.00%
216 4998 2582 48.34% 160 80 50.00%
232 18138 9322 48.61% 576 288 50.00%
264 62837 32377 48.47% 1920 960 50.00%

the correct value, and finally, apply bit-decomposition to produce
the Boolean labels. The overall flow diagram is shown in Figure 2.
It includes four significant processes: mod-𝑝 BD/BC and mod-2𝑘
BD/BC.

In contrast to [47], we can leverage the intrinsic projection gate
to construct mod-𝑝 BD/BC operations. The projection gate, as de-
scribed in [9, 27], enables swapping between Boolean labels and
mod-𝑝 arithmetic labels. Formod-2𝑘 BC/BD conversions, we further
optimize these operations using Row Reduction [58]. Originally, the
garbled table for mod-2𝑘 BC/BD consists of ciphertexts encrypted
by applying a secure hash function H to the input labels. Instead of
randomly choosing output labels (the Boolean labels of BD, or the
mod-2𝑘 label of BC), the garbler can select them such that the first
ciphertext of the garbled table is always an all-zero string. This re-
duces communication because the all-zero row in the garbled table
does not need to be sent. Row reduction is particularly effective in
optimizing conversions between Boolean and RNS arithmetic: con-
verting RNS arithmetic to Boolean invokes multiple base mod-2𝑘
BC/BD operations, and the optimization to these base operations
culminate in a significant overall improvement.

We have adapted the mod-2𝑘 BC/BD methods from [47] to in-
corporate row reduction. Detailed steps of the adjusted garbling
procedure are shown in Figure 3. In mod-2𝑘 BC, the original method
generates the resulting mod-2𝑘 label by sampling random B𝑖 . Row
reduction allows us to set B𝑖 such that C𝑖,0 is zero, enabling the
garbler to omit sending that row of Tab to the evaluator. Since a
mod-2𝑘 label is 𝑘 times longer than the hash, we use an XOR similar
to the output feedback (OFB) mode block cipher, with the K𝑖 as the
key to encrypt the longer mod-2𝑘 label. To generate B𝑖 , we encrypt
a long zero string, pack the result as a mod-2𝑘 label, and add the
global label to ensure C𝑖,0 returns zero correctly. The mod-2𝑘 BD is
similar but includes a bit-composition sub-process to generate each
(A(𝑖 ) , 𝛼 (𝑖 ) ), which is then used to set up the K𝑖 to reduce row C𝑖,0.

Using projection gate (which is row-reduced) in mod-𝑝 BD, and
mod-𝑝 BC from 𝑏 Boolean labels, the size of garbled table needed
for communication is reduced from 𝜆𝑝 log(𝑝) to 𝜆(𝑝 − 1) log(𝑝)
bits, and from 2𝑏 to 𝑏 bits, respectively. After optimizing the mod-
2𝑘 BD and mod-2𝑘 BC from 𝑏 Boolean labels, the size of garbled
table needed for communication is reduced from 𝜆(𝑘2 + 3𝑘 − 2)
to 1

2𝜆(𝑘
2 + 3𝑘 − 2) bits, and from 2𝜆𝑏𝑘 to 𝜆𝑏𝑘 bits, respectively.

Here 𝜆 denotes the security parameter. By combining these base
operations, we significantly reduce the communication overhead
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Garbling mod-2𝑘 bit-composition takes:
Input: 𝑘 Boolean labels K𝑖 whose color bit is 𝛼𝑖 (𝑖 ∈ [𝑘]), a mod-2𝑘 global label A, and the Boolean global label Δ′.
Output: a garbled table Tab, and a mod-2𝑘 labels B.
— For gate of id, 𝑖 ∈ [𝑘], 𝛽 ∈ {0, 1}

C𝑖,𝛽+𝛼𝑖 (mod 2) ← H
(
K𝑖 (𝛽), (id, 𝑖)

)
⊕̄
(
2𝑖𝛽A + B𝑖 (mod 2𝑘 )

)
Since mod-2𝑘 labels are 𝑘× longer than the hash of K𝑖 , a block cipher mode of XOR operation ⊕̄ is used. The (mod 2𝑘 ) is applied
element-wise in the label. The output Tab will consist of ciphertext (C𝑖,𝛽 )𝑖∈[𝑘 ],𝛽∈{0,1} .

— For 𝑖 ∈ [𝑘], we can choose
B𝑖 ←

(
H
(
K𝑖 (𝛼𝑖 ), (id, 𝑖)

)
⊕̄ 0𝑙

)
+ 2𝑖𝛼𝑖A (mod 2𝑘 )

where 𝑙 is mod-2𝑘 label bit-length, 0𝑙 is a 𝑙-bit zero string. Final output B← ∑
𝑖 B𝑖 (mod 2𝑘 ).

During the communication of Tab, for 𝑖 ∈ [𝑘], garbler can omit sending C𝑖,0 and evaluator sets C𝑖,0 ← 0𝑙 .

Garbling mod-2𝑘 bit-decomposition takes:
Input: a mod-2𝑘 label A whose color number is 𝛼 , a mod-2𝑘 global label Δ, and a Boolean global label Δ′.
Output: a garbled table Tab, and 𝑘 Boolean labels K𝑖 , 𝑖 ∈ [𝑘].
— For gate of id, 𝑖 ∈ [𝑘], 𝛽 ∈ {0, 1},

C𝑖,𝛽+𝛼 (𝑖 ) (mod 2) ← H
(
𝛽Δ + A(𝑖 ) (mod 2), (id, 𝑖)

)
⊕ (𝛽Δ′ ⊕ K𝑖 )

where (A(0) , 𝛼 (0) ) = (A, 𝛼). For 0 ≤ 𝑖 < 𝑘 − 1, a mini bit-composition is invoked as a sub-process that takes K𝑖 and generates
(A(𝑖+1) , 𝛼 (𝑖+1) ). The output Tab will consist of ciphertext (C𝑖,𝛽 )𝑖∈[𝑘 ],𝛽∈{0,1} .

— For 𝑖 ∈ [𝑘], we can choose
K𝑖 ← H

(
𝛼 (𝑖 )Δ + A(𝑖 ) (mod 2), (id, 𝑖)

)
⊕
(
(𝛼 (𝑖 ) mod 2) Δ′

)
During the communication of Tab, for 𝑖 ∈ [𝑘], garbler can omit sending C𝑖,0 and evaluator sets C𝑖,0 ← 0𝑙 , where 𝑙 is Boolean label
K𝑖 bit-length. The (mod 2) is applied element-wise in the label.

Figure 3: Improve mod-2𝑘 BC and BD algorithm with row reduction scheme. Symbols follow as in [47].

for the garbled table during the conversion between RNS arithmetic
and Boolean. Table 1 shows that, on average, the garbler sends 48.6%
fewer for the garbled table of RNS arithmetic BD. The key step of
BC into RNS arithmetic is the mod-𝑝 BC, where we obtain 50%
communication overhead improvement.

4 METHODOLOGY
In this section, we describe our experimental setup. The runtime
and communication costs for each benchmark were measured on
an Intel Core i7-10700K processor running at 3.80GHz [36]. GC
implementation leverages the AES-NI instruction set [1] to ensure
high performance and provide a competitive baseline.

We focused on two types of workloads: one supported by both
arithmetic and Boolean GC and the other is Boolean-only. Typically,
each workload involves two secret inputs – one from the garbler
and another from the evaluator. We conducted a series of experi-
ments across various input bit-widths. Boolean-specific benchmarks
include bitwise XOR, bitwise AND, division (Div), modulo (Mod),
and greater-than comparison (Geq). Common benchmarks that
can be executed in both Boolean and RNS arithmetic GC include
addition (Add), subtraction (Sub), multiplication on secret values
(Mul), multiplication with a public constant (Pub Mul, Boolean re-
alized by bit-shifting and addition), multiplexer (Mux, computing
𝑐 = 𝑠 · 𝑎 + (1 − 𝑠) · 𝑏 where 𝑠 is a {0 or 1} secret selector), and

public exponentiation (Pub Exp, computing 𝑎𝑐 where 𝑐 is a public
constant). These workloads were compiled and repeatedly executed
to profile their performance.

5 EVALUATION
In this section, we assess the optimization of arithmetic GC through
the use of fewer prime, and compare the performance of the opti-
mized arithmetic GC with Boolean GC. The evaluation focuses on
communication costs – including garbled inputs/outputs, oblivious
transfer, and garbled tables – as well as the runtime of garbling
and evaluating the circuit. We profile both communication and
runtime latency, as we believe their combined impact is crucial for
determining end-to-end performance.

5.1 Prime Reduction Optimization
We begin by showing the effectiveness of optimizing prime se-
lection in RNS arithmetic GC. In this experiment, we profile the
workloads supported by arithmetic GC and compare the commu-
nication overhead and computation latency between the original
RNS primes and the optimized primes. Figure 4 highlights the com-
munication differences, showing reduced overhead with optimized
primes in arithmetic GC, and Figure 5 illustrates the improved run-
time achieved through better prime selection. Given the varying
complexity of each function, their communication overhead and
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Figure 4: Comparison of communication overhead for 16-bit
arithmetic GC. For each operation, left bar represents the
uses of original RNS primes; right bar reflects the optimized
primes. The total communication is broken down into parts.

computation latency differ significantly. To provide clearer insights,
we categorize the functions into three groups, each with distinct
y-axis scales, allowing us to present the differences more effectively.
For instance, the BD function, which converts RNS arithmetic to
Boolean, is the most complex, resulting in substantially higher com-
munication and runtime costs; thus, it is displayed in a separate
subplot.

Our analysis yields two key observations. First, the results show
that optimizing prime selection leads to a reduction in both com-
munication overhead and runtime. In the RNS system, each base
operation is performed component-wise for each prime. With fewer
primes, the inputs, outputs, and garbled tables experience reduced
communication overhead. Simultaneously, computation latency
improves as fewer primes need to be processed. Second, the com-
parison reveals that communication and latency are not always
correlated. A function with relatively low communication overhead
may not necessarily have the shortest runtime. We find the reason
that although row reduction decreases the size of the garbled table,
it does not reduce the number of hash or other operation calls. For
example, despite the small communication overhead of Pub Mul, it
has a longer runtime than addition and subtraction due to the mul-
tiple multiplication and modulo operations involved, which slow
down performance compared to simpler operations like addition
and subtraction.

We also observe that the “free” operations in arithmetic GC (e.g.,
Add, Sub, and Pub Mul) do not generate garbled table communica-
tion, but there is still communication involved for inputs, outputs,
and oblivious transfer. Regarding run time, the garbling phase gen-
erally takes longer than the evaluation phase, as the garbler must
prepare the entire garbled table, while the evaluator only needs
to select and evaluate one row using the point-and-permute. We
repeated the experiment with different bit-width settings for arith-
metic GC and selected the 16-bit setting as a representative example,
as shown in Figures 4 and 5. Other bit-widths produced similar re-
sults, with differences scaled according to the improvement of the
sum of primes. Notably, the BD operation saw the most significant
improvement, with a 28% reduction in communication overhead,
while multiplication achieved a 20% decrease in latency. Across all
the benchmarks, GC with optimized primes demonstrated a 14.1%
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Figure 5: Comparison of run time overhead for 16-bit arith-
metic GC. For each operation, left bar represents the uses of
original RNS primes; right bar reflects the optimized primes.
The total time is broken down into garbling and evaluation.

reduction in communication overhead and a 15.7% decrease in total
run time. This aligns with our expectations, as Table 7 shows that
the optimized primes have a 12.1% lower sum than the original RNS
primes for 16-bit, which translates into the observed performance
gains.

5.2 Evaluating GC Realization Strategies
With the availability of conversion gates in GC, we can optimize a
particular function between Boolean or a mixed GC realization. If a
function consists entirely of arithmetic operations such as addition
and multiplication, it is clearly more efficient to use arithmetic GC
due to its lower cost. Conversely, for functions that are composed
entirely of Boolean operations or other operations unsupported
by arithmetic GC, Boolean GC is the clear choice. However, many
functions contain a mix of operations – some of which are better
handled by arithmetic GC, while others are only supported by
Boolean GC. For such mixed circuits, the key is to ensure that the
benefits of using arithmetic GC outweigh the conversion costs.
Otherwise, it is more efficient to remain in Boolean GC without
incurring those costs.

In this section, we identify the balance point where the advan-
tages of arithmetic GC offset the conversion expenses by comparing
traditional Boolean realizations with mixed GC realizations. There
are three possible approaches for implementing a function. Pure
Boolean GC: general approach to support any function. Boolean +
BC + arithmetic: This approach combines Boolean and arithmetic
GC with bit-composition gates, assuming the function can be di-
vided into Boolean and arithmetic components connected by a BC
gate. That is, the BC gate and arithmetic operations replace part
of the pure Boolean circuit. Arithmetic + BD + Boolean: This
method uses arithmetic and Boolean GC with bit-decomposition
gates. By comparing the second and third approaches to the first,
we can identify scenarios where the benefits of arithmetic GC sur-
pass the conversion costs, leading to a lower overall cost than the
traditional pure Boolean GC.

This analysis is performed for two GC approaches: stream GC
and GC with preprocessing.
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Figure 6: Communication comparison for 16-bit operations
in Boolean vs arithmetic GC. Each sub-figure is dash-divided:
the right side shows common operations with two bars per
operation (left bar for Boolean, right bar for arithmetic);
the left side displays operations unique to either Boolean or
arithmetic GC with a single bar.

5.2.1 StreamGC. Adirect approach to implementingGC is through
streaming, where the circuit is processed sequentially as a stream.
As each gate is garbled, it is immediately transmitted to the eval-
uator without waiting for the entire circuit to be completed. The
evaluator can begin evaluating the received garbled gate right away,
eliminating the need to store the entire garbled circuit. This method
allows for the garbling and evaluation phases to overlap, reduc-
ing idle time since the evaluator doesn’t have to wait for the full
circuit to arrive. In this setup, the communication of the garbled
table becomes crucial, as it is transmitted in real-time. The overall
latency will be largely determined by the garbling phase, given that
evaluation can occur simultaneously.

We present the detailed communication costs for each 16-bit
benchmark in Figure 6, and the corresponding garbling and evalua-
tion latency in Figure 7. To enhance clarity, the results are divided
into two scales. Each subplot categorizes the benchmarks into two
types: Boolean-only or arithmetic-only (i.e., BD) operations, and
common functions that can be executed in both Boolean and arith-
metic GC, where two bars are used to compare the costs. Starting
with the communication analysis, it is evident that for most com-
mon functions, arithmetic GC incurs lower costs than Boolean GC,
particularly in terms of reduced garbled table, because Boolean has
to process many gates. The output communication in arithmetic is
slightly higher than in Boolean GC: In Boolean, the garbler sends
two label hashes per wire, while in arithmetic GC, the garbler sends
hashes of all 𝑝 labels for each wire in mod-𝑝 , leading to increased
communication. Focusing on garbled table size is crucial. Suppose
the numbers of input and output are fixed, the cost of different func-
tions will manifest as in the garbled table, represented by the yellow
portion in Figure 6. An exception is the multiplexer gate, where the
arithmetic implementation has a higher cost. This is because the
Boolean multiplexer can be constructed using a small number of
simple AND and XOR operations, while the arithmetic multiplexer
requires addition and multiplication, which are more resource-
intensive. Therefore, it is generally advantageous to execute these
common functions using arithmetic GC, except multiplexer which
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Figure 7: Run time comparison for 16-bit operations in
Boolean vs arithmetic GC. Each sub-figure is dash-divided:
the right side shows common operations with two bars per
operation (left bar for Boolean, right bar for arithmetic);
the left side displays operations unique to either Boolean or
arithmetic GC with a single bar.

performs better in Boolean GC. Similar to Figure 4 and 5 in Section
5.1, communication and latency are not always correlated. In the
common functions (except Mux), the arithmetic GC reduces the
total communication by an average of 34.2% compared to Boolean
GC. Additionally, arithmetic GC speeds up total run time by 17.3×.
These findings suggest that if a function can be fully implemented
in arithmetic GC, it should be.

To decide whether to garble a mixed circuit or use pure Boolean
GC throughout, it is crucial to weigh the benefits of arithmetic
operations against the additional costs of conversion. We define
two key metrics: the BC equivalent ratio, 𝑟𝐵𝐶𝑜𝑝 =

𝑐𝐵𝐶
Δ𝑐𝑜𝑝

, and the BD
equivalent ratio, 𝑟𝐵𝐷𝑜𝑝 =

𝑐𝐵𝐷
Δ𝑐𝑜𝑝

. Here, the numerator (𝑐𝐵𝐶 , 𝑐𝐵𝐷 ) rep-
resents the cost of a BC or BD gate, while the denominator reflects
the cost difference of a common operation between Boolean and
arithmetic GC. In the context of stream GC, we primarily consider
the garbled table communication and garbling time. These ratios
indicate how many instances of a common operation in arithmetic
GC are needed to offset the extra cost of a BC or BD gate compared
to using Boolean GC alone. For example, the BC ratio for a 16-bit
addition operation, based on garbling time, is 𝑟𝐵𝐶

𝐴𝑑𝑑
= 26.1; it means

that for a function with fixed numbers of inputs and outputs, if it
includes 26.1 addition operations, the time to garble a pure Boolean
circuit is equivalent to garbling a BC gate and performing these
additions in arithmetic GC. In other words, if a function has more
than 26 add operations, it is advantageous to garble a “Boolean +
BC + arithmetic” mixed GC. Conversely, if the number of additions
is fewer than 26.1, it is preferable to use pure Boolean GC, as the
BC gate would negate the speed gains from arithmetic additions.

We conducted experiments to determine the BC and BD equiva-
lent ratios for each common function across various bit-widths. In
the stream GC, we focus on the ratios related to garbled table com-
munication (Figures 8A and 9A), and garbling latency (Figures 8B
and 9B). Generally, the BD ratio is larger than the BC ratio because
BD operation is more costly than BC, leading to a larger numerator.
For the garbled table communication, as the bit-width increases,
the BC and BD ratios for Mul and Pub Exp decrease because their
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Boolean costs increase more rapidly than their arithmetic counter-
parts. Notably, the BC ratio for Mul and Pub Exp drops below 1,
indicating that converting from Boolean to arithmetic for these
operations will be always cost-effective (assuming the subsequent
circuit remains in arithmetic). For Add, Sub and Pub Mul, their
ratios in garbled table are related to the number of RNS primes,
leading to an overall increase with bit-width.

When we examine garbling time, we find that the ratios are
higher than those for communication. This discrepancy arises be-
cause optimizations reduce garbled table communication but do not
affect computation, resulting in relatively high run times for BC and
BD operations. The ratios for Mul and Pub Exp continue to decline.
The BC ratio trends for Add, Sub, and Pub Mul indicate that the gar-
bling time for BC gate increases faster than the advantages gained
from arithmetic. This means that for higher bit-widths, more Add,
Sub, or Pub Mul operations are needed to offset the extra cost of
BC gate. On the other hand, their BD ratio trends remain relatively
stable, suggesting that the increase in BD garbling time is closely
matched by the arithmetic advantage gain of these operations.

The equivalent ratio can guide the decision whether to garble a
function as mixed GC. Their inverse ratios reveal that per common
operation can offset 1/𝑟𝐵𝐶𝑜𝑝 of BC gates (or 1/𝑟𝐵𝐷𝑜𝑝 of BD gates). For
instance, the 16-bit add operation has 1/𝑟𝐵𝐶

𝐴𝑑𝑑
= 0.038 regarding

cost in garbling time, meaning the benefit gained from garbling
an arithmetic add gate can offset the cost of 0.038 BC gates. If a
function involves a combination of multiple operations, summing

the inverse ratios,
∑
𝑜𝑝 (1/𝑟𝐵𝐶𝑜𝑝 ), can tell us whether these opera-

tions can collectively cover the number of BC gates required. The
same logic applies to BD gates. To easily analyze and choose a GC
realization for a function, we detail the inverse BC and BD ratios
in Appendix Tables 5 and 6.

5.2.2 GC with Preprocessing. To minimize real-time latency in
privacy-preserving computation applications, high-performance
protocols divide GC into a preprocessing phase and an online
phase. This approach leverages the fact that some steps are input-
independent and can be prepared offline, allowing the rest compu-
tation to proceed immediately once inputs are available [30, 39, 52].
The preprocessing includes preparing evaluator’s inputs via OT
and circuit garbling. When the actual inputs are ready, the evalu-
ator begins evaluating the pre-garbled circuit. The key difference
between stream and preprocessing GC is that in the latter, garbled
tables are precomputed and stored on the evaluator side, rather
than being streamed in real-time. Consequently, the effectiveness
of deploying GC with preprocessing depends on the evaluator’s
storage capacity and computational speed, which correspond to
the size of the garbled tables and the evaluation run time. Faster
evaluation speed directly translates to shorter real-time latency.

For garbled table storage, please refer to Section 5.2.1 and Fig-
ures 8A, 9A. Here, we focus on the BC and BD equivalent ratio when
considering cost in evaluation time, as presented in Figure 8C and
9C. Generally, the trends are similar to those observed in garbling
time. However, due to the point-and-permute optimization, evalua-
tion time is shorter than garbling time. As a result, the evaluation
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Table 2: Technical specifications of an example LeNet layer
and the ReLU substitution.

Layer Conv2D
Filter Size (3, 3)
Num. of Filters 32
Strides (1, 1)
Padding No
Input Shape (28, 28, 1)
Output Shape (26, 26, 32)
Multiplication per Conv 9
Addition per Conv 8
Total Multiplications 194688
Total Additions 173056
Num. of ReLU 21632
Per Approx. ReLU:
• Pub Exp 54
• Pub Mul 57
• Add 57
• Mul 1

cost equivalent ratios are relatively lower than those for garbling
time. Similarly, for functions that combine multiple operations, the
inverse ratio can also be used to assess whether it is advantageous
to garble a mixed circuit.

6 A MACHINE LEARNING CASE STUDY
In this section, we apply the comparison of different GC realizations
to a machine learning inference task, using it to estimate their prac-
tical applicability. This analysis provides an intuitive understanding
of when garbling a mixed circuit is likely to be efficient.

We use a convolutional layer of the LeNetmodel [45] withMNIST
dataset as an example. The layer details are shown in Table 2. This
layer includes both arithmetic operations (convolution) and Boolean
operations (ReLU activation), making it an ideal candidate for test-
ing the performance of mixed GC. The convolution operations
consist of multiplications and additions, while the ReLU activation
is implemented using a comparison gate and a multiplexer. Previous
works [23, 24, 29, 52] have explored replacing the original ReLU
with other methods like high-degree polynomial approximations.
Lattigo [46, 57] provides such a polynomial approximation for ReLU,
involving only Add, Pub Mul, Mul, and Pub Exp operations, as listed
in Table 2. We incorporate this approximation into our comparison,
resulting in four GC realizations for this convolutional layer:

(1) Pure Boolean (Baseline): Implements all convolutions
and ReLU activations using traditional Boolean GC.

(2) Full Convert: Implements convolution in arithmetic GC,
then converts to Boolean (BD) for ReLU, and finally converts
back (BC) to arithmetic.

(3) Smart Convert: Implements convolution in arithmetic GC,
converts to Boolean (BD) for ReLU, but skips converting
back to arithmetic since the subsequent layer may require
Boolean operations (e.g., max pooling).

(4) Pure Arithmetic: Implements both convolution and ReLU
using arithmetic GC, with ReLU replaced by a polynomial
approximation.

Table 3: The number of BD gate required bymixed GC for the
example layer, and the BD gate that can be offset by switching
convolution from Boolean to arithmetic GC.

Num. of BD Required 21632
Num. of BD Covered in 4-bit 8-bit 16-bit 32-bit
Cost in Garbled Table 43264 57393 88254 101143
Cost in Garbling Time 3136 11382 30709 57204
Cost in Evaluation Time 6043 17235 44806 82668

For the pure arithmetic approach, note that the ReLU approxima-
tion is limited only when the input 𝑥 is within the range −1 ≤ 𝑥 ≤ 1.
Therefore, additional data processing is required before applying
the approximation in the convolutional layer. It is not our target
to discuss how to approximate ReLU for real-world private ML,
but we include this approach in our performance comparison to
provide a comprehensive overview of the trade-offs between pure
Boolean GC, mixed GC, and pure arithmetic GC. ReLU approxima-
tion could also require additional adjustments (such as retraining
or fine-tuning) for ML deployment due to the errors between the
approximation and the actual result.

Using the inverse equivalent ratio discussed in Section 5.2, we can
quickly estimate whether it is advantageous to convert to a mixed
GC or to remain within pure Boolean GC. The inverse equivalent
ratios are calculated based on the costs in terms of garbled table
size, garbling time, and evaluation time. As shown in Table 3, the
number of BD (or BC) gates required corresponds to the required
ReLU operations. Instead of fully pure Boolean, by running the
convolution (i.e., multiplication and addition) in arithmetic GC
and converting to Boolean for ReLU with a BD gate, we aim to
offset the BD gate cost with the benefits gained from arithmetic
GC. If such benefit covers the BD gates required, the mixed GC
is likely to outperform the pure Boolean GC. Table 3 shows in
most scenarios, the benefits of arithmetic operations cover enough
BD gates, especially for larger input bit-widths. However, there are
exceptions with inputs of 4-bit and 8-bit, where the costs in garbling
time and evaluation time fall short of covering the required BD
gates. This indicates that for 4-bit and 8-bit convolution layers, the
mixed GC has worse garbling and evaluation times than the pure
Boolean GC.

Table 4 presents the overall comparison of the four GC realiza-
tions, considering garbled table size, garbling time, and evaluation
time. The results alignwith our expectations from Table 3. Although
the full convert involves BC gates, the BC cost is much smaller than
BD. If the BD gates are adequately covered, we will find that both
the full convert and smart convert approaches will outperform the
pure Boolean realization. From 4-bit to 32-bit, the higher coverage
of BD gates allows for more slack in mixed circuits, resulting in
lower costs in the full and smart convert approaches. Conversely, in
the 4-bit and 8-bit scenarios, the full and smart convert approaches
showworse performance than the pure Boolean baseline, consistent
with the inadequate BD gate coverage.

In most cases, the pure arithmetic approach with approximation
performs better than the smart convert, and the smart convert out-
performs the full convert. For larger bit-widths, mixed GC tends
to outperform pure Boolean, as Boolean multiplications and addi-
tions become increasingly costly. This case study challenges the
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Table 4: Layer cost comparison at different input bit-widths of four GC realizations. The comparing difference to the baseline is
shown as percentage. The more reduction rate indicates the better performance.

Bit-width 4-bit 8-bit 16-bit 32-bit
Garbled Table (kbit):
Pure Boolean Baseline 1.89E+06 7.78E+06 3.15E+07 1.27E+08
Full Convert 1.15E+06 (-39%) 3.55E+06 (-54%) 9.70E+06 (-69%) 3.27E+07 (-74%)
Smart Convert 1.13E+06 (-40%) 3.49E+06 (-55%) 9.48E+06 (-70%) 3.19E+07 (-75%)
Pure Arithmetic 1.43E+06 (-24%) 3.48E+06 (-55%) 9.22E+06 (-71%) 2.44E+07 (-81%)
Garbling Time (us):
Pure Boolean Baseline 1.70E+06 6.68E+06 2.61E+07 1.03E+08
Full Convert 6.04E+06 (+254%) 1.18E+07 (+76%) 2.13E+07 (-18%) 5.18E+07 (-50%)
Smart Convert 5.86E+06 (+244%) 1.12E+07 (+68%) 1.94E+07 (-26%) 4.37E+07 (-58%)
Pure Arithmetic 4.30E+06 (+152%) 7.60E+06 (+14%) 1.46E+07 (-44%) 3.17E+07 (-69%)
Evaluation Time (us):
Pure Boolean Baseline 1.28E+06 5.15E+06 1.97E+07 7.78E+07
Full Convert 3.30E+06 (+157%) 6.62E+06 (+28%) 1.12E+07 (-43%) 2.63E+07 (-66%)
Smart Convert 3.21E+06 (+150%) 6.31E+06 (+22%) 1.02E+07 (-48%) 2.24E+07 (-71%)
Pure Arithmetic 1.89E+06 (+47%) 2.98E+06 (-42%) 6.79E+06 (-65%) 1.29E+07 (-83%)

intuition that pure arithmetic or mixed GC is always superior –
small bit-width Boolean operations can be more efficient than arith-
metic, regarding in terms of the run time. The findings also suggest
that garbling an entire convolutional layer using GC can be slow
and resource-intensive, highlighting the potential for hybrid pro-
tocol solutions to enhance performance. For workloads that need
to be implemented using GC, particularly if pure arithmetic GC
is not feasible, we suggest estimating performance between tradi-
tional pure Boolean GC and mixed GC using the equivalent ratio
(Appendix Tables 5 and 6) before implementation. This approach
enables selecting the most suitable GC realization with the lowest
performance overhead. At the same time, the run time of mixed GC
does not gain as much advantage as the communication reduction,
which suggests that GC requires the development of specialized
accelerators to eliminate the run time latency.

7 RELATEDWORK
Many PPC frameworks incorporate a combination of secure MPC
protocols to achieve robust data privacy, especially in the context
of private machine learning applications. These hybrid frameworks
often integrate multiple cryptographic techniques, including GC,
oblivious transfer (OT), homomorphic encryption (HE), and secret
sharing (SS), to balance the trade-offs between security and perfor-
mance [16, 17, 39, 44, 52, 55, 68]. Comprehensive surveys have ex-
plored the effectiveness of these protocols across various scenarios,
providing valuable insights for practitioners [2, 19, 53, 60]. Addi-
tionally, approaches like trusted execution environments (TEE) [21],
have been proposed to enhance security in an alternative threat
model settings.

While our case study focuses on private ML, the application of
GC extends far beyond this domain. As a PPC protocol, GC is em-
ployed in a wide range of scenarios, including oblivious RAM [50],
privacy-preserving benchmarking [13], graph analysis [38, 59], de-
cision trees [69], medical and health applications [10, 61], web
security [20], auction and election [6, 42] and private edge comput-
ing [51, 65]. One of the key strengths of GC lies in its adaptability

to various private settings, including multi-party (not just two-
party) scenario [3, 55, 66], post-quantum security [18], and scenar-
ios involving malicious adversaries by integrated with additional
processes (such as zero-knowledge proofs) [25, 70]. The diverse
and complex application scenarios for GC highlight the ongoing
need to optimize GC implementations and determine efficient GC
realizations for different workloads.

8 CONCLUSION
In this paper, we present ABLE, the first real implementation to
evaluate the benefits and overheads of mixed GC. We introduce
a heuristic method to improve the arithmetic GC by using fewer
primes, which significantly reduces communication and computa-
tion overhead. Our approach decreases communication by 14.1%
and latency by 15.7% in a 16-bit arithmetic GC system. We also
perform row reduction optimization to the bit-composition (BC)
and bit-decomposition (BD) processes, achieving a 48.6% reduction
in garbled table communication (or storage) for BD operations, and
a 50% reduction for BC operations.

To determine whether an operation should be transferred to
arithmetic GC, we conduct a comprehensive evaluation of vari-
ous operations, considering their garbled table costs, garbling and
evaluation latency, and different approaches – stream and prepro-
cessing GC. We introduce the BC and BD equivalent ratios as tools
to quickly estimate whether incorporating BC and BD gates to
build the mixed circuit is worthwhile. This method changes the
traditional GC realization process by enabling potential GC users
to determine the suitable circuit configuration early in the devel-
opment stage, before actual deployment. Finally, we demonstrate
our approach with a machine learning case study, analyzing perfor-
mance across different realizations. The results reveal that there is
no universally the best scheme; instead, careful cost estimation at
the outset allows users to select their own GC scheme for a specific
application. By optimizing GC schemes, ABLE advances the secure
multi-party computation and improves the efficiency in the domain
of privacy-preserving computations.
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Table 5: Inverse BC equivalent ratio: showing how many BC gates can be offset by switching one operation from Boolean to
arithmetic GC, considering GC cost of different types.

Bit-width Cost Add Sub Pub Mul Mul Pub Exp
Gb Table 1.000a 1.000 1.500 6.750 24.125

4 Gb Time 0.105 0.090 0.248 0.350 2.307
Ev Time 0.151 0.132 0.393 0.808 3.826
Gb Table 0.667 0.667 1.167 10.917 36.958

8 Gb Time 0.069 0.059 0.161 0.933 3.587
Ev Time 0.090 0.080 0.234 1.550 5.046
Gb Table 0.400 0.400 0.750 14.275 47.538

16 Gb Time 0.038 0.034 0.094 1.240 4.276
Ev Time 0.052 0.047 0.136 1.903 5.991
Gb Table 0.222 0.222 0.431 16.618 54.726

32 Gb Time 0.019 0.017 0.046 1.293 4.259
Ev Time 0.028 0.026 0.073 2.137 6.633

a For example, regardingGarbled Table cost, the benefit of switching a Boolean
Add to arithmetic can offset 1.000 BC gate.

Table 6: Inverse BD equivalent ratio: showing how many BD gates can be offset by switching one operation from Boolean to
arithmetic GC, considering GC cost of different types.

Bit-width Cost Add Sub Pub Mul Mul Pub Exp
Gb Table 0.029a 0.029 0.044 0.196 0.702

4 Gb Time 0.004 0.003 0.009 0.013 0.084
Ev Time 0.005 0.004 0.013 0.027 0.126
Gb Table 0.017 0.017 0.030 0.280 0.947

8 Gb Time 0.004 0.003 0.009 0.055 0.211
Ev Time 0.005 0.004 0.013 0.084 0.274
Gb Table 0.012 0.012 0.023 0.442 1.473

16 Gb Time 0.005 0.004 0.012 0.154 0.529
Ev Time 0.006 0.006 0.016 0.225 0.708
Gb Table 0.007 0.007 0.013 0.513 1.691

32 Gb Time 0.004 0.004 0.010 0.290 0.955
Ev Time 0.005 0.005 0.014 0.420 1.303

a For example, regarding Garbled Table cost, the benefit of switching a
Boolean Add to arithmetic can offset 0.029 BD gate.

Table 7: Arithmetic GC prime optimization for bit-width (or ring Z) ranging from 3-bit to 127-bit. The original method selects
the first 𝑘 primes in the RNS system of arithmetic GC, exceeding the necessary range as shown in the Excess column. The Sum
column displays the total sum of these primes. The Rm column lists the primes that can be removed through optimization,
reducing the total prime sum, as shown in improvement (Imp).

Z 𝑘 Excess Sum Rm. Excess Sum Imp. Z 𝑘 Excess Sum Rm. Excess Sum Imp.
23 3 3.75× 10 (3) 1.25× 7 30.0% 266 17 26.06× 440 (23) 1.13× 417 5.2%
24 3 1.88× 10 (-) 1.88× 10 0.0% 267 17 13.03× 440 (13) 1.× 427 3.0%
25 4 6.56× 17 (2, 3) 1.09× 12 29.4% 268 17 6.51× 440 (2, 3) 1.09× 435 1.1%
26 4 3.28× 17 (3) 1.09× 14 17.6% 269 17 3.26× 440 (3) 1.09× 437 0.7%
27 4 1.64× 17 (-) 1.64× 17 0.0% 270 17 1.63× 440 (-) 1.63× 440 0.0%
28 5 9.02× 28 (7) 1.29× 21 25.0% 271 18 49.67× 501 (47) 1.06× 454 9.4%
29 5 4.51× 28 (3) 1.5× 25 10.7% 272 18 24.84× 501 (23) 1.08× 478 4.6%
210 5 2.26× 28 (2) 1.13× 26 7.1% 273 18 12.42× 501 (11) 1.13× 490 2.2%
211 5 1.13× 28 (-) 1.13× 28 0.0% 274 18 6.21× 501 (2, 3) 1.03× 496 1.0%
212 6 7.33× 41 (7) 1.05× 34 17.1% 275 18 3.1× 501 (3) 1.03× 498 0.6%
213 6 3.67× 41 (3) 1.22× 38 7.3% 276 18 1.55× 501 (-) 1.55× 501 0.0%

Continued on next page
15



Table 7 – Continued from previous page
Z 𝑘 Excess Sum Rm. Excess Sum Imp. Z 𝑘 Excess Sum Rm. Excess Sum Imp.

214 6 1.83× 41 (-) 1.83× 41 0.0% 277 19 52.× 568 (47) 1.11× 521 8.3%
215 7 15.58× 58 (13) 1.2× 45 22.4% 278 19 26.× 568 (23) 1.13× 545 4.0%
216 7 7.79× 58 (7) 1.11× 51 12.1% 279 19 13.× 568 (13) 1.× 555 2.3%
217 7 3.89× 58 (3) 1.3× 55 5.2% 280 19 6.5× 568 (2, 3) 1.08× 563 0.9%
218 7 1.95× 58 (-) 1.95× 58 0.0% 281 19 3.25× 568 (3) 1.08× 565 0.5%
219 8 18.5× 77 (17) 1.09× 60 22.1% 282 19 1.63× 568 (-) 1.63× 568 0.0%
220 8 9.25× 77 (7) 1.32× 70 9.1% 283 20 57.69× 639 (53) 1.09× 586 8.3%
221 8 4.63× 77 (3) 1.54× 74 3.9% 284 20 28.84× 639 (23) 1.25× 616 3.6%
222 8 2.31× 77 (2) 1.16× 75 2.6% 285 20 14.42× 639 (13) 1.11× 626 2.0%
223 8 1.16× 77 (-) 1.16× 77 0.0% 286 20 7.21× 639 (7) 1.03× 632 1.1%
224 9 13.3× 100 (13) 1.02× 87 13.0% 287 20 3.61× 639 (3) 1.2× 636 0.5%
225 9 6.65× 100 (2, 3) 1.11× 95 5.0% 288 20 1.8× 639 (-) 1.8× 639 0.0%
226 9 3.32× 100 (3) 1.11× 97 3.0% 289 21 65.8× 712 (61) 1.08× 651 8.6%
227 9 1.66× 100 (-) 1.66× 100 0.0% 290 21 32.9× 712 (31) 1.06× 681 4.4%
228 10 24.1× 129 (23) 1.05× 106 17.8% 291 21 16.45× 712 (13) 1.27× 699 1.8%
229 10 12.05× 129 (11) 1.1× 118 8.5% 292 21 8.23× 712 (7) 1.18× 705 1.0%
230 10 6.03× 129 (2, 3) 1.× 124 3.9% 293 21 4.11× 712 (3) 1.37× 709 0.4%
231 10 3.01× 129 (3) 1.× 126 2.3% 294 21 2.06× 712 (2) 1.03× 710 0.3%
232 10 1.51× 129 (-) 1.51× 129 0.0% 295 21 1.03× 712 (-) 1.03× 712 0.0%
233 11 23.35× 160 (23) 1.02× 137 14.4% 296 22 40.61× 791 (37) 1.1× 754 4.7%
234 11 11.67× 160 (11) 1.06× 149 6.9% 297 22 20.31× 791 (19) 1.07× 772 2.4%
235 11 5.84× 160 (5) 1.17× 155 3.1% 298 22 10.15× 791 (7) 1.45× 784 0.9%
236 11 2.92× 160 (2) 1.46× 158 1.3% 299 22 5.08× 791 (5) 1.02× 786 0.6%
237 11 1.46× 160 (-) 1.46× 160 0.0% 2100 22 2.54× 791 (2) 1.27× 789 0.3%
238 12 27.× 197 (23) 1.17× 174 11.7% 2101 22 1.27× 791 (-) 1.27× 791 0.0%
239 12 13.5× 197 (13) 1.04× 184 6.6% 2102 23 52.67× 874 (47) 1.12× 827 5.4%
240 12 6.75× 197 (2, 3) 1.12× 192 2.5% 2103 23 26.33× 874 (23) 1.14× 851 2.6%
241 12 3.37× 197 (3) 1.12× 194 1.5% 2104 23 13.17× 874 (13) 1.01× 861 1.5%
242 12 1.69× 197 (-) 1.69× 197 0.0% 2105 23 6.58× 874 (2, 3) 1.1× 869 0.6%
243 13 34.59× 238 (31) 1.12× 207 13.0% 2106 23 3.29× 874 (3) 1.1× 871 0.3%
244 13 17.29× 238 (17) 1.02× 221 7.1% 2107 23 1.65× 874 (-) 1.65× 874 0.0%
245 13 8.65× 238 (7) 1.24× 231 2.9% 2108 24 73.24× 963 (73) 1.× 890 7.6%
246 13 4.32× 238 (3) 1.44× 235 1.3% 2109 24 36.62× 963 (31) 1.18× 932 3.2%
247 13 2.16× 238 (2) 1.08× 236 0.8% 2110 24 18.31× 963 (17) 1.08× 946 1.8%
248 13 1.08× 238 (-) 1.08× 238 0.0% 2111 24 9.16× 963 (7) 1.31× 956 0.7%
249 14 23.24× 281 (23) 1.01× 258 8.2% 2112 24 4.58× 963 (3) 1.53× 960 0.3%
250 14 11.62× 281 (11) 1.06× 270 3.9% 2113 24 2.29× 963 (2) 1.14× 961 0.2%
251 14 5.81× 281 (5) 1.16× 276 1.8% 2114 24 1.14× 963 (-) 1.14× 963 0.0%
252 14 2.9× 281 (2) 1.45× 279 0.7% 2115 25 55.5× 1060 (53) 1.05× 1007 5.0%
253 14 1.45× 281 (-) 1.45× 281 0.0% 2116 25 27.75× 1060 (23) 1.21× 1037 2.2%
254 15 34.13× 328 (31) 1.1× 297 9.5% 2117 25 13.88× 1060 (13) 1.07× 1047 1.2%
255 15 17.07× 328 (17) 1.× 311 5.2% 2118 25 6.94× 1060 (2, 3) 1.16× 1055 0.5%
256 15 8.53× 328 (7) 1.22× 321 2.1% 2119 25 3.47× 1060 (3) 1.16× 1057 0.3%
257 15 4.27× 328 (3) 1.42× 325 0.9% 2120 25 1.73× 1060 (-) 1.73× 1060 0.0%
258 15 2.13× 328 (2) 1.07× 326 0.6% 2121 26 87.59× 1161 (83) 1.06× 1078 7.1%
259 15 1.07× 328 (-) 1.07× 328 0.0% 2122 26 43.8× 1161 (43) 1.02× 1118 3.7%
260 16 28.27× 381 (23) 1.23× 358 6.0% 2123 26 21.9× 1161 (19) 1.15× 1142 1.6%
261 16 14.13× 381 (13) 1.09× 368 3.4% 2124 26 10.95× 1161 (7) 1.56× 1154 0.6%
262 16 7.07× 381 (7) 1.01× 374 1.8% 2125 26 5.47× 1161 (5) 1.09× 1156 0.4%
263 16 3.53× 381 (3) 1.18× 378 0.8% 2126 26 2.74× 1161 (2) 1.37× 1159 0.2%
264 16 1.77× 381 (-) 1.77× 381 0.0% 2127 26 1.37× 1161 (-) 1.37× 1161 0.0%
265 17 52.12× 440 (47) 1.11× 393 10.7%
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